These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28621787)

  • 1. Cascade energy transfer and tunable emission from nanosheet hybrids: locating acceptor molecules through chiral doping.
    Goudappagouda ; Wakchaure VC; Ranjeesh KC; Abhai CAR; Babu SS
    Chem Commun (Camb); 2017 Jun; 53(52):7072-7075. PubMed ID: 28621787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Cascade energy transfer and tunable emission from nanosheet hybrids: locating acceptor molecules through chiral doping.
    Goudappagouda ; Wakchaure VC; Ranjeesh KC; Abhai CAR; Babu SS
    Chem Commun (Camb); 2019 May; 55(45):6462. PubMed ID: 31112170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-location of acceptors as "isolated" or "stacked" energy traps in a supramolecular donor self-assembly: a strategy to wavelength tunable FRET emission.
    Ajayaghosh A; Vijayakumar C; Praveen VK; Babu SS; Varghese R
    J Am Chem Soc; 2006 Jun; 128(22):7174-5. PubMed ID: 16734466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Light-Harvesting Nanotube.
    Ji L; Sang Y; Ouyang G; Yang D; Duan P; Jiang Y; Liu M
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):844-848. PubMed ID: 30447036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular polymer-directed light-harvesting system based on a stepwise energy transfer cascade.
    Xiao T; Zhang L; Wu H; Qian H; Ren D; Li ZY; Sun XQ
    Chem Commun (Camb); 2021 Jun; 57(47):5782-5785. PubMed ID: 33998620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix.
    Yang D; Duan P; Zhang L; Liu M
    Nat Commun; 2017 Jun; 8():15727. PubMed ID: 28585538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.
    Samanta SK; Bhattacharya S
    Chemistry; 2012 Dec; 18(49):15875-85. PubMed ID: 23074067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-Regulated Self-Assembly of an Achiral Donor-Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification.
    Li Y; Duan P; Liu M
    Chemistry; 2017 Jun; 23(34):8225-8231. PubMed ID: 28337793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Light-Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace.
    Li C; Zhang J; Zhang S; Zhao Y
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1643-1647. PubMed ID: 30418700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.
    Ensslen P; Wagenknecht HA
    Acc Chem Res; 2015 Oct; 48(10):2724-33. PubMed ID: 26411920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting.
    Jana B; Bhattacharyya S; Patra A
    Nanoscale; 2016 Sep; 8(35):16034-43. PubMed ID: 27546792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Light-Harvesting System from Chromophores in Lipid Vesicles.
    Sahin T; Harris MA; Vairaprakash P; Niedzwiedzki DM; Subramanian V; Shreve AP; Bocian DF; Holten D; Lindsey JS
    J Phys Chem B; 2015 Aug; 119(32):10231-43. PubMed ID: 26230425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer.
    Sarkar A; Dhiman S; Chalishazar A; George SJ
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13767-13771. PubMed ID: 28892232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-induced energy transfer within donor-acceptor dipeptides: Towards an artificial light-harvesting hydrogel system.
    Wang X; Zhou W; Xu R; Xu Y; Song H; Li H; Wang J
    J Colloid Interface Sci; 2023 Sep; 645():466-471. PubMed ID: 37156155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability.
    Duan P; Yanai N; Nagatomi H; Kimizuka N
    J Am Chem Soc; 2015 Feb; 137(5):1887-94. PubMed ID: 25599418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient excitation-energy transfer in ion-based organic nanoparticles with versatile tunability of the fluorescence colours.
    Yao H; Ashiba K
    Chemphyschem; 2012 Aug; 13(11):2703-10. PubMed ID: 22674683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multichromophoric organic molecules encapsulated in polymer nanoparticles for artificial light harvesting.
    Bhattacharyya S; Jana B; Patra A
    Chemphyschem; 2015 Mar; 16(4):796-804. PubMed ID: 25600650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal-Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors.
    Sun MJ; Zhong YW; Yao J
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7820-7825. PubMed ID: 29665184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-IR emissive chlorin-bacteriochlorin energy-transfer dyads with a common donor and acceptors with tunable emission wavelength.
    Yu Z; Ptaszek M
    J Org Chem; 2013 Nov; 78(21):10678-91. PubMed ID: 24079536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.