These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28621932)

  • 1. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes.
    Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar Paint from TiO
    Shen G; Du Z; Pan Z; Du J; Zhong X
    ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents.
    Wang W; Rao H; Fang W; Zhang H; Zhou M; Pan Z; Zhong X
    J Phys Chem Lett; 2019 Jan; 10(2):229-237. PubMed ID: 30600681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the efficiency of quantum dot-sensitized solar cells by increasing the QD loading amount.
    Zhang Z; Wang W; Rao H; Pan Z; Zhong X
    Chem Sci; 2024 Apr; 15(15):5482-5495. PubMed ID: 38638208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Loading Amount and Performance of Quantum Dot-Sensitized Solar Cells through Metal Salt Solutions Treatment on Photoanode.
    Wang W; Du J; Ren Z; Peng W; Pan Z; Zhong X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31006-31015. PubMed ID: 27797169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%.
    Du J; Du Z; Hu JS; Pan Z; Shen Q; Sun J; Long D; Dong H; Sun L; Zhong X; Wan LJ
    J Am Chem Soc; 2016 Mar; 138(12):4201-9. PubMed ID: 26962680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition.
    Song H; Lin Y; Zhang Z; Rao H; Wang W; Fang Y; Pan Z; Zhong X
    J Am Chem Soc; 2021 Mar; 143(12):4790-4800. PubMed ID: 33734670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells.
    Wang W; Zhao L; Wang Y; Xue W; He F; Xie Y; Li Y
    J Am Chem Soc; 2019 Mar; 141(10):4300-4307. PubMed ID: 30798596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells.
    Li W; Zhong X
    J Phys Chem Lett; 2015 Mar; 6(5):796-806. PubMed ID: 26262655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12.
    Wang W; Feng W; Du J; Xue W; Zhang L; Zhao L; Li Y; Zhong X
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29359826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells.
    Peng W; Du J; Pan Z; Nakazawa N; Sun J; Du Z; Shen G; Yu J; Hu JS; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5328-5336. PubMed ID: 28092935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.
    Wang J; Mora-Seró I; Pan Z; Zhao K; Zhang H; Feng Y; Yang G; Zhong X; Bisquert J
    J Am Chem Soc; 2013 Oct; 135(42):15913-22. PubMed ID: 24070636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance enhancement of quantum-dot-sensitized solar cells by potential-induced ionic layer adsorption and reaction.
    Liu IP; Chang CW; Teng H; Lee YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19378-84. PubMed ID: 25331272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linker-assisted attachment of CdSe quantum dots to TiO2: Time- and concentration-dependent adsorption, agglomeration, and sensitized photocurrent.
    Kern ME; Watson DF
    Langmuir; 2014 Nov; 30(44):13293-300. PubMed ID: 25333329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CdSe quantum dots and N719-dye decorated hierarchical TiO2 nanorods for the construction of efficient co-sensitized solar cells.
    Subramaniam MR; Kumaresan D
    Chemphyschem; 2015 Aug; 16(12):2543-8. PubMed ID: 26212770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large pore size and high porosity of TiO2 photoanode for excellent photovoltaic performance of CdS quantum dot sensitized solar cell.
    Shen H; Lin H; Zhao L; Liu Y; Oron D
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1095-100. PubMed ID: 23646579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.