These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28621953)

  • 1. Observation of Exciton Redshift-Blueshift Crossover in Monolayer WS
    Sie EJ; Steinhoff A; Gies C; Lui CH; Ma Q; Rösner M; Schönhoff G; Jahnke F; Wehling TO; Lee YH; Kong J; Jarillo-Herrero P; Gedik N
    Nano Lett; 2017 Jul; 17(7):4210-4216. PubMed ID: 28621953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluence dependent dynamics of excitons in monolayer MoSi
    Yadav P; Khamari B; Singh B; Adarsh KV; Agarwal A
    J Phys Condens Matter; 2023 Mar; 35(23):. PubMed ID: 36917860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS
    Cunningham PD; Hanbicki AT; McCreary KM; Jonker BT
    ACS Nano; 2017 Dec; 11(12):12601-12608. PubMed ID: 29227085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton dynamics and annihilation in WS2 2D semiconductors.
    Yuan L; Huang L
    Nanoscale; 2015 Apr; 7(16):7402-8. PubMed ID: 25826397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of quantum-confined exciton states in monolayer WS
    Zheng SW; Wang L; Wang HY; Xu CY; Luo Y; Sun HB
    Nanoscale; 2021 Oct; 13(40):17093-17100. PubMed ID: 34623366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Momentum-Resolved Observation of Exciton Formation Dynamics in Monolayer WS
    Wallauer R; Perea-Causin R; Münster L; Zajusch S; Brem S; Güdde J; Tanimura K; Lin KQ; Huber R; Malic E; Höfer U
    Nano Lett; 2021 Jul; 21(13):5867-5873. PubMed ID: 34165994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Exciton-Phonon Scattering from Monolayer to Bilayer WS
    Raja A; Selig M; Berghäuser G; Yu J; Hill HM; Rigosi AF; Brus LE; Knorr A; Heinz TF; Malic E; Chernikov A
    Nano Lett; 2018 Oct; 18(10):6135-6143. PubMed ID: 30096239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Relaxation-Paths of C-Exciton for Constructing Band Nesting Bypass in WS
    Feng J; Li Y; Li J; Feng Q; Xin W; Liu W; Xu H; Liu Y
    Nano Lett; 2022 May; 22(9):3699-3706. PubMed ID: 35481760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast formation and dynamics of interlayer exciton in a large-area CVD-grown WS
    Yu Y; Wang Z; Wei J; Zhao W; Lin X; Jin Z; Liu W; Ma G
    J Phys Condens Matter; 2018 Dec; 30(49):495701. PubMed ID: 30431018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide.
    Sun D; Rao Y; Reider GA; Chen G; You Y; Brézin L; Harutyunyan AR; Heinz TF
    Nano Lett; 2014 Oct; 14(10):5625-9. PubMed ID: 25171389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy.
    Hill HM; Rigosi AF; Roquelet C; Chernikov A; Berkelbach TC; Reichman DR; Hybertsen MS; Brus LE; Heinz TF
    Nano Lett; 2015 May; 15(5):2992-7. PubMed ID: 25816155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral and defect-induced exciton annihilation in defective monolayer WS
    Liu H; Wang C; Liu D; Luo J
    Nanoscale; 2019 Apr; 11(16):7913-7920. PubMed ID: 30964503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS
    Li H; Zheng X; Liu Y; Zhang Z; Jiang T
    Nanoscale; 2018 Jan; 10(4):1650-1659. PubMed ID: 29199746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS
    Cuadra J; Baranov DG; Wersäll M; Verre R; Antosiewicz TJ; Shegai T
    Nano Lett; 2018 Mar; 18(3):1777-1785. PubMed ID: 29369640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Binding Energy and Layer-Dependent Exciton Dynamics in Monolayer and Multilayer WS
    Liu Y; Hu X; Wang T; Liu D
    ACS Nano; 2019 Dec; 13(12):14416-14425. PubMed ID: 31825594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Excitons, Trions, and Dark Excitons in Monolayer WS
    McDonnell LP; Huang CC; Cui Q; Hewak DW; Smith DC
    Nano Lett; 2018 Feb; 18(2):1428-1434. PubMed ID: 29297693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS
    Cunningham PD; McCreary KM; Jonker BT
    J Phys Chem Lett; 2016 Dec; 7(24):5242-5246. PubMed ID: 27973899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton formation in monolayer transition metal dichalcogenides.
    Ceballos F; Cui Q; Bellus MZ; Zhao H
    Nanoscale; 2016 Jun; 8(22):11681-8. PubMed ID: 27219022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal dynamics of excitons in monolayer and bulk WS2.
    He J; He D; Wang Y; Cui Q; Ceballos F; Zhao H
    Nanoscale; 2015 Jun; 7(21):9526-31. PubMed ID: 25947347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption.
    Zhao S; He D; He J; Zhang X; Yi L; Wang Y; Zhao H
    Nanoscale; 2018 May; 10(20):9538-9546. PubMed ID: 29745949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.