These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 28621997)

  • 1. Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath.
    Xu X; Purdy T; Taylor JM
    Phys Rev Lett; 2017 Jun; 118(22):223602. PubMed ID: 28621997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities.
    Yang JY; Wang DY; Bai CH; Guan SY; Gao XY; Zhu AD; Wang HF
    Opt Express; 2019 Aug; 27(16):22855-22867. PubMed ID: 31510570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomechanical dark mode.
    Dong C; Fiore V; Kuzyk MC; Wang H
    Science; 2012 Dec; 338(6114):1609-13. PubMed ID: 23160956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system.
    Li L; Luo RH; Liu L; Zhang S; Zhang JQ
    Sci Rep; 2018 Sep; 8(1):14276. PubMed ID: 30250233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative cavity photon spectral function in an optomechanical system with two parametrically-driven mechanical modes.
    Motazedifard A; Dalafi A; Naderi MH
    Opt Express; 2023 Oct; 31(22):36615-36637. PubMed ID: 38017809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.
    Peterson RW; Purdy TP; Kampel NS; Andrews RW; Yu PL; Lehnert KW; Regal CA
    Phys Rev Lett; 2016 Feb; 116(6):063601. PubMed ID: 26918990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-pressure cooling and optomechanical instability of a micromirror.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A
    Nature; 2006 Nov; 444(7115):71-4. PubMed ID: 17080085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems.
    Cotrufo M; Fiore A; Verhagen E
    Phys Rev Lett; 2017 Mar; 118(13):133603. PubMed ID: 28409944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically induced robust phonon transport and chiral cooling in an optomechanical system.
    Kim S; Xu X; Taylor JM; Bahl G
    Nat Commun; 2017 Aug; 8(1):205. PubMed ID: 28785045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters.
    Nie W; Chen A; Lan Y
    Opt Express; 2015 Nov; 23(24):30970-84. PubMed ID: 26698728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State.
    Guo J; Norte R; Gröblacher S
    Phys Rev Lett; 2019 Nov; 123(22):223602. PubMed ID: 31868423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity.
    Yuan M; Singh V; Blanter YM; Steele GA
    Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A; Mackowski JM; Michel C; Pinard L; Français O; Rousseau L
    Phys Rev Lett; 2006 Sep; 97(13):133601. PubMed ID: 17026032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal rocking in a nonlinear hybrid optomechanical system.
    Zhang X; Sheng J; Wu H
    Opt Express; 2018 Mar; 26(5):6285-6293. PubMed ID: 29529820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-cooling of a micromirror by radiation pressure.
    Gigan S; Böhm HR; Paternostro M; Blaser F; Langer G; Hertzberg JB; Schwab KC; Bäuerle D; Aspelmeyer M; Zeilinger A
    Nature; 2006 Nov; 444(7115):67-70. PubMed ID: 17080084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical system.
    Liao Q; Zhou L; Wang X; Liu Y
    Opt Express; 2022 Oct; 30(21):38776-38788. PubMed ID: 36258435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of extraneous thermal noise in cavity optomechanics.
    Zhao Y; Wilson DJ; Ni KK; Kimble HJ
    Opt Express; 2012 Feb; 20(4):3586-612. PubMed ID: 22418119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground-state cooling of a mechanical oscillator in a hybrid optomechanical system including an atomic ensemble.
    Zeng W; Nie W; Li L; Chen A
    Sci Rep; 2017 Dec; 7(1):17258. PubMed ID: 29222484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.