These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 2862208)

  • 1. Isolation and characterization of novel suppressor T cell clones from murine fetal thymus.
    Teh HS; Ho M; McMaster WR
    J Immunol; 1985 Sep; 135(3):1582-8. PubMed ID: 2862208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cytotoxic T lymphocytes in the prevention of lupus-like disease occurring in a murine model of graft-vs-host disease.
    Via CS; Sharrow SO; Shearer GM
    J Immunol; 1987 Sep; 139(6):1840-9. PubMed ID: 2957440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Class II antigen-specific murine cytolytic T lymphocytes (CTL). II. Genuine class II specificity of Lyt-2+ CTL clones.
    Shinohara N; Hozumi N; Watanabe M; Bluestone JA; Johnson-Leva R; Sachs DH
    J Immunol; 1988 Jan; 140(1):30-6. PubMed ID: 3257229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clonal analysis of cytolytic T lymphocyte-mediated lysis of target cells with inducible antigen expression: correlation between antigen density and requirement for Lyt-2/3 function.
    Shimonkevitz R; Luescher B; Cerottini JC; MacDonald HR
    J Immunol; 1985 Aug; 135(2):892-9. PubMed ID: 2409156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of proliferative and cytotoxic responses to interleukin 2 and concanavalin A in murine fetal thymus.
    Teh HS; Ho M
    J Immunol; 1985 Mar; 134(3):1653-8. PubMed ID: 3871454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential helper and effector responses of Lyt-2+ T cells to H-2Kb mutant (Kbm) determinants and the appearance of thymic influence on anti-Kbm CTL responsiveness.
    Mizuochi T; Munitz TI; McCarthy SA; Andrysiak PM; Kung J; Gress RE; Singer A
    J Immunol; 1986 Nov; 137(9):2740-7. PubMed ID: 2944960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of primary cytotoxic T lymphocyte responses generated during mixed leukocyte culture with H-2d identical Qa-1-disparate cells.
    Huston DP; Tavana G; Rich RR; Gressens SE
    J Immunol; 1986 Sep; 137(6):1776-81. PubMed ID: 2943800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth-dependent variation of major histocompatibility complex (MHC) restriction and expression of Ly-2 and CD3/alpha/beta T cell receptor in cloned cytotoxic T cells.
    Weltzien HU; Kempkes B; Studer R; Melchers I; Eichmann K
    Eur J Immunol; 1988 Mar; 18(3):431-7. PubMed ID: 2965649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of thymocytes in fetal organ culture: analysis of phenotypic changes accompanying the appearance of cytolytic and interleukin 2-producing cells.
    Kisielow P; Leiserson W; Von Boehmer H
    J Immunol; 1984 Sep; 133(3):1117-23. PubMed ID: 6611365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rat anti-mouse T4 monoclonal antibody (H129.19) inhibits the proliferation of Ia-reactive T cell clones and delineates two phenotypically distinct (T4+, Lyt-2,3-, and T4-, Lyt-2,3+) subsets among anti-Ia cytolytic T cell clones.
    Pierres A; Naquet P; Van Agthoven A; Bekkhoucha F; Denizot F; Mishal Z; Schmitt-Verhulst AM; Pierres M
    J Immunol; 1984 Jun; 132(6):2775-82. PubMed ID: 6202760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a cloned ultraviolet radiation (UV)-induced suppressor T cell line that is capable of inhibiting anti-UV tumor-immune responses.
    Roberts LK
    J Immunol; 1986 Mar; 136(5):1908-16. PubMed ID: 2936813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell surface expression of cytotoxic T lymphocyte-defined, AKR/Gross leukemia virus-associated tumor antigens by normal AKR.H-2b splenic B cells.
    Green WR
    J Immunol; 1983 Dec; 131(6):3078-84. PubMed ID: 6605998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Thy-1 plus complement-treated, cultured bone marrow cells resemble fetal thymocytes in killer cell function and marker expression.
    Hurwitz JL; McAndrew EC; Doherty PC
    J Immunol; 1986 Sep; 137(6):1757-63. PubMed ID: 2875109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressor T cells, distinct from "veto cells," are induced by alloantigen priming and mediate transferable suppression of cytotoxic T lymphocyte responses in vivo.
    Owens T; Crispe IN
    J Immunol; 1985 Nov; 135(5):2984-9. PubMed ID: 2413108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the cytolytic attack mechanism of the cytotoxic T lymphocyte (CTL): preparation of antisera against cellfree cytosolic extracts of a CTL clone capable of blocking the lethal hit stage of CTL cytolysis and analysis of the cytolytic structure.
    Hiserodt JC
    J Immunol; 1985 Jul; 135(1):53-62. PubMed ID: 3158707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L3T4+ cytotoxic T lymphocytes specific for class I H-2 antigens are activated in primary mixed lymphocyte reactions.
    Macphail S; Stutman O
    J Immunol; 1987 Dec; 139(12):4007-15. PubMed ID: 2961804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocking of CTL-mediated killing by monoclonal antibodies to LFA-1 and Lyt-2, 3. II. Evidence that trypsin pretreatment of target cells removes a non-H-2 molecule important in killing.
    Gromkowski SH; Heagy W; Martz E
    J Immunol; 1985 Jan; 134(1):70-7. PubMed ID: 3880579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies to the L3T4 and Lyt-2 molecules interfere with antigen receptor-driven activation of cloned murine T cells.
    Moldwin RL; Havran WL; Nau GJ; Lancki DW; Kim DK; Fitch FW
    J Immunol; 1987 Aug; 139(3):657-64. PubMed ID: 2955046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of monoclonal antibodies directed against murine T lymphocyte cell surface antigens on lymphokine production by cloned T lymphocytes reactive with class I MHC or Mls alloantigens.
    Lancki DW; Prystowsky MB; Vogel SN; Beller DI; Dialynas DP; Fitch FW
    J Immunol; 1984 Oct; 133(4):2051-7. PubMed ID: 6236262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional differentiation and repertoire diversification of T cells derived from single progenitor cells.
    Kina T; Amagai T; Nishikawa S; Araya S; Katsura Y
    Eur J Immunol; 1988 Jun; 18(6):897-903. PubMed ID: 2968269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.