These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2862258)

  • 1. The effect of punch velocity on the compaction of a variety of materials.
    Roberts RJ; Rowe RC
    J Pharm Pharmacol; 1985 Jun; 37(6):377-84. PubMed ID: 2862258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the relationship between punch velocity and particle size on the compaction behaviour of materials with varying deformation mechanisms.
    Roberts RJ; Rowe RC
    J Pharm Pharmacol; 1986 Aug; 38(8):567-71. PubMed ID: 2876071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic investigation on pressure dependency of Heckel parameter.
    Patel S; Kaushal AM; Bansal AK
    Int J Pharm; 2010 Apr; 389(1-2):66-73. PubMed ID: 20083173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent deformation of some direct compression excipients.
    Rees JE; Rue PJ
    J Pharm Pharmacol; 1978 Oct; 30(10):601-7. PubMed ID: 30812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Gurnham equation in characterizing the compressibility of pharmaceutical materials.
    Zhao J; Burt HM; Miller RA
    Int J Pharm; 2006 Jul; 317(2):109-13. PubMed ID: 16678985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the uniaxial compaction of pharmaceutical powders using the mechanical properties of single crystals. I: Ductile materials.
    Duncan-Hewitt WC; Weatherly GC
    J Pharm Sci; 1990 Feb; 79(2):147-52. PubMed ID: 2324963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining mechanical properties of various pharmaceutical excipients with the gravitation-based high-velocity compaction analysis method.
    Tanner T; Antikainen O; Ehlers H; Blanco D; Yliruusi J
    Int J Pharm; 2018 Mar; 539(1-2):131-138. PubMed ID: 29414122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of wax on compaction of microcrystalline cellulose beads made by extrusion and spheronization.
    IloaƱusi NO; Schwartz JB
    Drug Dev Ind Pharm; 1998 Jan; 24(1):37-44. PubMed ID: 15605595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical properties and compact analysis of commonly used direct compression binders.
    Zhang Y; Law Y; Chakrabarti S
    AAPS PharmSciTech; 2003 Dec; 4(4):E62. PubMed ID: 15198557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature increase during the tableting of pharmaceutical materials.
    Cespi M; Bonacucina G; Casettari L; Ronchi S; Palmieri GF
    Int J Pharm; 2013 May; 448(1):320-6. PubMed ID: 23518365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the Punch Head Design on the Physical Quality of Tablets Produced in a Rotary Press.
    Anbalagan P; Sarkar S; Liew CV; Heng PWS
    J Pharm Sci; 2017 Jan; 106(1):356-365. PubMed ID: 27842972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the displacement-time waveform in the determination of Heckel behaviour under dynamic conditions in a compaction simulator and a fully-instrumented rotary tablet machine.
    Muller FX; Augsburger LL
    J Pharm Pharmacol; 1994 Jun; 46(6):468-75. PubMed ID: 7932041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the specific surface area of tablets composed of pharmaceutical materials with various deformation behaviors.
    Busignies V; Leclerc B; Truchon S; Tchoreloff P
    Drug Dev Ind Pharm; 2011 Feb; 37(2):225-33. PubMed ID: 20653462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation.
    Hauschild K; Picker-Freyer KM
    AAPS PharmSci; 2004 May; 6(2):e16. PubMed ID: 15760046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compaction properties of powders: the relationship between compression cycle hysteresis areas and maximally applied punch pressures.
    Khossravi D
    Drug Dev Ind Pharm; 1999 Aug; 25(8):885-95. PubMed ID: 10434132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of punch displacement and work of powder compaction on a rotary tablet press.
    Oates RJ; Mitchell AG
    J Pharm Pharmacol; 1989 Aug; 41(8):517-23. PubMed ID: 2571694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powder and compaction characteristics of pregelatinized starches.
    Rojas J; Uribe Y; Zuluaga A
    Pharmazie; 2012 Jun; 67(6):513-7. PubMed ID: 22822539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.