These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28622636)

  • 1. CRISPR-based engineering of next-generation lactic acid bacteria.
    Hidalgo-Cantabrana C; O'Flaherty S; Barrangou R
    Curr Opin Microbiol; 2017 Jun; 37():79-87. PubMed ID: 28622636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing mechanistic understanding and bioengineering of probiotic lactobacilli and bifidobacteria by genome editing.
    Zuo F; Marcotte H
    Curr Opin Biotechnol; 2021 Aug; 70():75-82. PubMed ID: 33445135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli.
    Goh YJ; Barrangou R
    Curr Opin Biotechnol; 2019 Apr; 56():163-171. PubMed ID: 30530241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and epigenetic landscapes drive CRISPR-based genome editing in
    Pan M; Morovic W; Hidalgo-Cantabrana C; Roberts A; Walden KKO; Goh YJ; Barrangou R
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2205068119. PubMed ID: 35857876
    [No Abstract]   [Full Text] [Related]  

  • 5. CRISPR-Cas Technologies and Applications in Food Bacteria.
    Stout E; Klaenhammer T; Barrangou R
    Annu Rev Food Sci Technol; 2017 Feb; 8():413-437. PubMed ID: 28245154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Based Technologies and the Future of Food Science.
    Selle K; Barrangou R
    J Food Sci; 2015 Nov; 80(11):R2367-72. PubMed ID: 26444151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Directed Microbiome Manipulation across the Food Supply Chain.
    Barrangou R; Notebaart RA
    Trends Microbiol; 2019 Jun; 27(6):489-496. PubMed ID: 31003873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducible Plasmid Self-Destruction (IPSD) Assisted Genome Engineering in Lactobacilli and Bifidobacteria.
    Zuo F; Zeng Z; Hammarström L; Marcotte H
    ACS Synth Biol; 2019 Aug; 8(8):1723-1729. PubMed ID: 31277549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining omics technologies with CRISPR-based genome editing to study food microbes.
    Pan M; Barrangou R
    Curr Opin Biotechnol; 2020 Feb; 61():198-208. PubMed ID: 32035346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.
    Bober JR; Beisel CL; Nair NU
    Annu Rev Biomed Eng; 2018 Jun; 20():277-300. PubMed ID: 29528686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics.
    van Pijkeren JP; Barrangou R
    Microbiol Spectr; 2017 Sep; 5(5):. PubMed ID: 28959937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends.
    Papizadeh M; Rohani M; Nahrevanian H; Javadi A; Pourshafie MR
    Microb Pathog; 2017 Oct; 111():118-131. PubMed ID: 28826768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of CRISPR-Cas systems in lactic acid bacteria.
    Roberts A; Barrangou R
    FEMS Microbiol Rev; 2020 Sep; 44(5):523-537. PubMed ID: 32433763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human intestinal mucosa-associated Lactobacillus and Bifidobacterium strains with probiotic properties modulate IL-10, IL-6 and IL-12 gene expression in THP-1 cells.
    Čitar M; Hacin B; Tompa G; Štempelj M; Rogelj I; Dolinšek J; Narat M; Matijašić BB
    Benef Microbes; 2015; 6(3):325-36. PubMed ID: 25391349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunology and probiotic impact of the newborn and young children intestinal microflora.
    Bezirtzoglou E; Stavropoulou E
    Anaerobe; 2011 Dec; 17(6):369-74. PubMed ID: 21515397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium.
    Briner AE; Lugli GA; Milani C; Duranti S; Turroni F; Gueimonde M; Margolles A; van Sinderen D; Ventura M; Barrangou R
    PLoS One; 2015; 10(7):e0133661. PubMed ID: 26230606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxonomy and important features of probiotic microorganisms in food and nutrition.
    Holzapfel WH; Haberer P; Geisen R; Björkroth J; Schillinger U
    Am J Clin Nutr; 2001 Feb; 73(2 Suppl):365S-373S. PubMed ID: 11157343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene editing and genetic engineering approaches for advanced probiotics: A review.
    Yadav R; Kumar V; Baweja M; Shukla P
    Crit Rev Food Sci Nutr; 2018 Jul; 58(10):1735-1746. PubMed ID: 28071925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.