BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 28622671)

  • 1. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.
    Chen H; Zhang Y; Kalra MK; Lin F; Chen Y; Liao P; Zhou J; Wang G
    IEEE Trans Med Imaging; 2017 Dec; 36(12):2524-2535. PubMed ID: 28622671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.
    Kandarpa VSS; Perelli A; Bousse A; Visvikis D
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249
    [No Abstract]   [Full Text] [Related]  

  • 5. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
    Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B
    Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
    Zhang P; Li K
    Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Method of CT Image Denoising Based on Residual Encoder-Decoder Network.
    Liu Y
    J Healthc Eng; 2021; 2021():2384493. PubMed ID: 34603643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module.
    Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW
    J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.
    Budak Ü; Guo Y; Tanyildizi E; Şengür A
    Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual residual convolutional neural network (DRCNN) for low-dose CT imaging.
    Feng Z; Cai A; Wang Y; Li L; Tong L; Yan B
    J Xray Sci Technol; 2021; 29(1):91-109. PubMed ID: 33459686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical note: Phantom-based training framework for convolutional neural network CT noise reduction.
    Huber NR; Missert AD; Gong H; Leng S; Yu L; McCollough CH
    Med Phys; 2023 Feb; 50(2):821-830. PubMed ID: 36385704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
    Wu D; Kim K; Li Q
    Med Phys; 2021 Dec; 48(12):7657-7672. PubMed ID: 34791655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Texture-aware dual domain mapping model for low-dose CT reconstruction.
    Wang H; Zhao X; Liu W; Li LC; Ma J; Guo L
    Med Phys; 2022 Jun; 49(6):3860-3873. PubMed ID: 35297051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.