These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28622679)

  • 1. Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms.
    Rabidas R; Midya A; Chakraborty J
    IEEE J Biomed Health Inform; 2018 May; 22(3):826-834. PubMed ID: 28622679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradient and texture analysis for the classification of mammographic masses.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2000 Oct; 19(10):1032-43. PubMed ID: 11131493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system.
    Catarious DM; Baydush AH; Floyd CE
    Med Phys; 2004 Jun; 31(6):1512-20. PubMed ID: 15259655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis.
    Sahiner B; Chan HP; Petrick N; Helvie MA; Goodsitt MM
    Med Phys; 1998 Apr; 25(4):516-26. PubMed ID: 9571620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast cancer diagnosis in digitized mammograms using curvelet moments.
    Dhahbi S; Barhoumi W; Zagrouba E
    Comput Biol Med; 2015 Sep; 64():79-90. PubMed ID: 26151831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization.
    Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measures of radial correlation and trend for classification of breast masses in mammograms.
    Casti P; Mencattini A; Salmeri M; Ancona A; Mangieri F; Rangayyan RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6490-3. PubMed ID: 24111228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier.
    Singh SP; Urooj S
    J Med Syst; 2016 Apr; 40(4):105. PubMed ID: 26892455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Architectural Distortion in Mammograms by Linear Saliency.
    Narváez F; Alvarez J; Garcia-Arteaga JD; Tarquino J; Romero E
    J Med Syst; 2017 Feb; 41(2):26. PubMed ID: 28005248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided classification of mammographic masses using visually sensitive image features.
    Wang Y; Aghaei F; Zarafshani A; Qiu Y; Qian W; Zheng B
    J Xray Sci Technol; 2017; 25(1):171-186. PubMed ID: 27911353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space.
    Chan HP; Wei D; Helvie MA; Sahiner B; Adler DD; Goodsitt MM; Petrick N
    Phys Med Biol; 1995 May; 40(5):857-76. PubMed ID: 7652012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast Mass Detection in Digital Mammogram Based on Gestalt Psychology.
    Wang H; Feng J; Bu Q; Liu F; Zhang M; Ren Y; Lv Y
    J Healthc Eng; 2018; 2018():4015613. PubMed ID: 29854359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of border information in the classification of mammographic masses.
    Varela C; Timp S; Karssemeijer N
    Phys Med Biol; 2006 Jan; 51(2):425-41. PubMed ID: 16394348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of global and local region-based bilateral mammographic feature asymmetry to predict short-term breast cancer risk.
    Li Y; Fan M; Cheng H; Zhang P; Zheng B; Li L
    Phys Med Biol; 2018 Jan; 63(2):025004. PubMed ID: 29226849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of structural similarity in mammograms for detection of bilateral asymmetry.
    Casti P; Mencattini A; Salmeri M; Rangayyan RM
    IEEE Trans Med Imaging; 2015 Feb; 34(2):662-71. PubMed ID: 25361502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a fully automated system for detection and diagnosis of mammographic lesions.
    Casti P; Mencattini A; Salmeri M; Ancona A; Mangieri F; Rangayyan RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4667-70. PubMed ID: 25571033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of mammographic mass characterization using spiculation meausures and morphological features.
    Sahiner B; Chan HP; Petrick N; Helvie MA; Hadjiiski LM
    Med Phys; 2001 Jul; 28(7):1455-65. PubMed ID: 11488579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass type-specific sparse representation for mass classification in computer-aided detection on mammograms.
    Kim DH; Lee SH; Ro YM
    Biomed Eng Online; 2013; 12 Suppl 1(Suppl 1):S3. PubMed ID: 24564973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Globally supported radial basis function based collocation method for evolution of level set in mass segmentation using mammograms.
    Kashyap KL; Bajpai MK; Khanna P
    Comput Biol Med; 2017 Aug; 87():22-37. PubMed ID: 28549292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.