These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28622718)

  • 1. Surface Effect on Oil Transportation in Nanochannel: a Molecular Dynamics Study.
    Zheng H; Du Y; Xue Q; Zhu L; Li X; Lu S; Jin Y
    Nanoscale Res Lett; 2017 Dec; 12(1):413. PubMed ID: 28622718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the influence of surface roughness with different shapes and quantities on convective heat transfer of fluid within nanochannels using molecular dynamics simulations.
    Chen C; Li Y
    J Mol Model; 2024 Jan; 30(2):42. PubMed ID: 38228840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mass transport properties and applications of nanochannels].
    Li Z; Wu Z; Xia X
    Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic Simulations of the Permeability and Dynamic Transportation Characteristics of Diamond Nanochannels.
    Li B; Dong B; Shi T; Zhan H; Zhang Y
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulations of the Oil-Detachment from the Hydroxylated Silica Surface: Effects of Surfactants, Electrostatic Interactions, and Water Flows on the Water Molecular Channel Formation.
    Tang J; Qu Z; Luo J; He L; Wang P; Zhang P; Tang X; Pei Y; Ding B; Peng B; Huang Y
    J Phys Chem B; 2018 Feb; 122(6):1905-1918. PubMed ID: 29337552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Field Regulation of Ion Transport in Polyethylene Terephthalate Nanochannels.
    Li Y; Du G; Mao G; Guo J; Zhao J; Wu R; Liu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38055-38060. PubMed ID: 31553570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic-Charge- and Electric-Field-Induced Smart Gating for Water Transportation.
    Xiao K; Zhou Y; Kong XY; Xie G; Li P; Zhang Z; Wen L; Jiang L
    ACS Nano; 2016 Oct; 10(10):9703-9709. PubMed ID: 27648730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmotic Effects on Sample Concentration at the Interface of a Micro/Nanochannel.
    Chun H
    Anal Chem; 2017 Sep; 89(17):8924-8930. PubMed ID: 28723105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted orientation induced unidirectional water transport through nanochannels.
    Wan R; Lu H; Li J; Bao J; Hu J; Fang H
    Phys Chem Chem Phys; 2009 Nov; 11(42):9898-902. PubMed ID: 19851569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular simulation study into the stability of hydrated graphene nanochannels used in nanofluidics devices.
    Williams CD; Wei Z; Shaharudin MRB; Carbone P
    Nanoscale; 2022 Mar; 14(9):3467-3479. PubMed ID: 35170614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water flow inside various geometric nano-confinement channels.
    Xu X; Zhao Y; Wang J; Zhang N; Wang C; Zhang J; Wei N
    Phys Chem Chem Phys; 2020 Nov; 22(42):24633-24639. PubMed ID: 33095223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Simulation of Surfactant Displacement of Residual Oil in Nanopores: Formation of Water Channels and Electrostatic Interaction.
    Fu L; Cheng Y; Liao K; Fang Z; Shao M; Zhu J; Xu Z; Xu Y
    ACS Omega; 2024 Jan; 9(3):4085-4095. PubMed ID: 38284087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-driven supercritical CO
    Liu B; Li X; Qi C; Mai T; Zhan K; Zhao L; Shen Y
    RSC Adv; 2018 Jan; 8(3):1461-1468. PubMed ID: 35540880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nanochannel array based device for determination of the isoelectric point of confined proteins.
    Gao HL; Li CY; Ma FX; Wang K; Xu JJ; Chen HY; Xia XH
    Phys Chem Chem Phys; 2012 Jul; 14(26):9460-7. PubMed ID: 22652811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels.
    Wang Y; Wang C; Zhang Y; Huo F; He H; Zhang S
    Small; 2019 Jul; 15(29):e1804508. PubMed ID: 30680916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nanochannel dimension on the transport of water molecules.
    Su J; Guo H
    J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system.
    Kim B; Heo J; Kwon HJ; Cho SJ; Han J; Kim SJ; Lim G
    ACS Nano; 2013 Jan; 7(1):740-7. PubMed ID: 23244067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations.
    Hyżorek K; Tretiakov KV
    J Chem Phys; 2016 May; 144(19):194507. PubMed ID: 27208958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.