BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 28622731)

  • 1. Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective.
    Ewart L; Fabre K; Chakilam A; Dragan Y; Duignan DB; Eswaraka J; Gan J; Guzzie-Peck P; Otieno M; Jeong CG; Keller DA; de Morais SM; Phillips JA; Proctor W; Sura R; Van Vleet T; Watson D; Will Y; Tagle D; Berridge B
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1579-1585. PubMed ID: 28622731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
    Hughes DJ; Kostrzewski T; Sceats EL
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1593-1604. PubMed ID: 28504617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organs-on-chips: Progress, challenges, and future directions.
    Low LA; Tagle DA
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1573-1578. PubMed ID: 28343437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Emergence of Microphysiological Systems (Organs-on-chips) as Paradigm-changing Tools for Toxicologic Pathology.
    Rudmann DG
    Toxicol Pathol; 2019 Jan; 47(1):4-10. PubMed ID: 30407146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research.
    Low LA; Tagle DA
    Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development.
    Hargrove-Grimes P; Low LA; Tagle DA
    Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organs-on-a-chip: a new tool for drug discovery.
    Polini A; Prodanov L; Bhise NS; Manoharan V; Dokmeci MR; Khademhosseini A
    Expert Opin Drug Discov; 2014 Apr; 9(4):335-52. PubMed ID: 24620821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian hormone control in a human-on-a-chip: In vitro biology's ignored component?
    Cyr KJ; Avaldi OM; Wikswo JP
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1714-1731. PubMed ID: 29065796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-contained, low-cost Body-on-a-Chip systems for drug development.
    Wang YI; Oleaga C; Long CJ; Esch MB; McAleer CW; Miller PG; Hickman JJ; Shuler ML
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1701-1713. PubMed ID: 29065797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Current Status and Use of Microphysiological Systems by the Pharmaceutical Industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary.
    Baker TK; Van Vleet TR; Mahalingaiah PK; Grandhi TSP; Evers R; Ekert J; Gosset JR; Chacko SA; Kopec AK
    Drug Metab Dispos; 2024 Feb; 52(3):198-209. PubMed ID: 38123948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasingly microphysiological models.
    Nat Biomed Eng; 2019 Jul; 3(7):491-492. PubMed ID: 31278390
    [No Abstract]   [Full Text] [Related]  

  • 14. Microfluidic organ-on-chip technology for blood-brain barrier research.
    van der Helm MW; van der Meer AD; Eijkel JC; van den Berg A; Segerink LI
    Tissue Barriers; 2016; 4(1):e1142493. PubMed ID: 27141422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development.
    Marx U; Akabane T; Andersson TB; Baker E; Beilmann M; Beken S; Brendler-Schwaab S; Cirit M; David R; Dehne EM; Durieux I; Ewart L; Fitzpatrick SC; Frey O; Fuchs F; Griffith LG; Hamilton GA; Hartung T; Hoeng J; Hogberg H; Hughes DJ; Ingber DE; Iskandar A; Kanamori T; Kojima H; Kuehnl J; Leist M; Li B; Loskill P; Mendrick DL; Neumann T; Pallocca G; Rusyn I; Smirnova L; Steger-Hartmann T; Tagle DA; Tonevitsky A; Tsyb S; Trapecar M; Van de Water B; Van den Eijnden-van Raaij J; Vulto P; Watanabe K; Wolf A; Zhou X; Roth A
    ALTEX; 2020; 37(3):365-394. PubMed ID: 32113184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization.
    Fowler S; Chen WLK; Duignan DB; Gupta A; Hariparsad N; Kenny JR; Lai WG; Liras J; Phillips JA; Gan J
    Lab Chip; 2020 Feb; 20(3):446-467. PubMed ID: 31932816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy.
    Dhiman N; Kingshott P; Sumer H; Sharma CS; Rath SN
    Biosens Bioelectron; 2019 Jul; 137():236-254. PubMed ID: 31121461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and
    Yoon S; Kilicarslan You D; Jeong U; Lee M; Kim E; Jeon TJ; Kim SM
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38275308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organs-on-a-Chip.
    Low LA; Sutherland M; Lumelsky N; Selimovic S; Lundberg MS; Tagle DA
    Adv Exp Med Biol; 2020; 1230():27-42. PubMed ID: 32285363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ-on-a-Chip: A New Paradigm for Drug Development.
    Ma C; Peng Y; Li H; Chen W
    Trends Pharmacol Sci; 2021 Feb; 42(2):119-133. PubMed ID: 33341248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.