BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28623226)

  • 21. Persistence of circannual rhythms in ground squirrels with lesions of the suprachiasmatic nuclei.
    Dark J; Pickard GE; Zucker I
    Brain Res; 1985 Apr; 332(2):201-7. PubMed ID: 3995267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circannual variations in circadian rhythms of ground squirrels.
    Lee TM; Carmichael MS; Zucker I
    Am J Physiol; 1986 May; 250(5 Pt 2):R831-6. PubMed ID: 3706569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal patterns of body temperature in response to experimental photoperiod variation in a non-hibernating ground squirrel.
    Refinetti R; Kenagy GJ
    J Comp Physiol B; 2023 Mar; 193(2):219-226. PubMed ID: 36840751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of daily melatonin administration on circadian activity rhythms in the diurnal Indian palm squirrel (Funambulus pennanti).
    Rajaratnam SM; Redman JR
    J Biol Rhythms; 1997 Aug; 12(4):339-47. PubMed ID: 9438882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revealing a circadian clock in captive arctic-breeding songbirds, lapland longspurs (Calcarius lapponicus), under constant illumination.
    Ashley NT; Ubuka T; Schwabl I; Goymann W; Salli BM; Bentley GE; Buck CL
    J Biol Rhythms; 2014 Dec; 29(6):456-69. PubMed ID: 25326246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survival value of suprachiasmatic nuclei (SCN) in four wild sciurid rodents.
    DeCoursey PJ
    Behav Neurosci; 2014 Jun; 128(3):240-9. PubMed ID: 24886187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistence, entrainment, and function of circadian rhythms in polar vertebrates.
    Williams CT; Barnes BM; Buck CL
    Physiology (Bethesda); 2015 Mar; 30(2):86-96. PubMed ID: 25729054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding.
    Polidarová L; Sládek M; Soták M; Pácha J; Sumová A
    Chronobiol Int; 2011 Apr; 28(3):204-15. PubMed ID: 21452916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus: lack of effect of photic entrainment and disruption by constant light.
    Beaulé C; Houle LM; Amir S
    J Mol Neurosci; 2003; 21(2):133-47. PubMed ID: 14593213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters.
    Meyer-Bernstein EL; Jetton AE; Matsumoto SI; Markuns JF; Lehman MN; Bittman EL
    Endocrinology; 1999 Jan; 140(1):207-18. PubMed ID: 9886827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature sensitivity of the suprachiasmatic nucleus of ground squirrels and rats in vitro.
    Ruby NF; Heller HC
    J Biol Rhythms; 1996 Jun; 11(2):126-36. PubMed ID: 8744240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal molecular timekeeping within the rat circadian clock.
    Sumová A; Bendová Z; Sládek M; Kováciková Z; Illnerová H
    Physiol Res; 2004; 53 Suppl 1():S167-76. PubMed ID: 15119947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Persistence of circadian rhythmicity in hibernating ground squirrels.
    Grahn DA; Miller JD; Houng VS; Heller HC
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1251-8. PubMed ID: 8184969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mechanisms of structural plasticity associated with photic synchronization of the circadian clock within the suprachiasmatic nucleus].
    Bosler O; Girardet C; Sage-Ciocca D; Jacomy H; François-Bellan AM; Becquet D
    J Soc Biol; 2009; 203(1):49-63. PubMed ID: 19358811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emergence of circadian and photoperiodic system level properties from interactions among pacemaker cells.
    Beersma DG; van Bunnik BA; Hut RA; Daan S
    J Biol Rhythms; 2008 Aug; 23(4):362-73. PubMed ID: 18663243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light.
    Polidarová L; Sládek M; Novosadová Z; Sumová A
    Chronobiol Int; 2017; 34(1):105-117. PubMed ID: 27791401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.