These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 28623231)
41. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
42. RNAi induced knockdown of a cadherin-like protein (EF531715) does not affect toxicity of Cry34/35Ab1 or Cry3Aa to Diabrotica virgifera virgifera larvae (Coleoptera: Chrysomelidae). Tan SY; Rangasamy M; Wang H; Vélez AM; Hasler J; McCaskill D; Xu T; Chen H; Jurzenski J; Kelker M; Xu X; Narva K; Siegfried BD Insect Biochem Mol Biol; 2016 Aug; 75():117-24. PubMed ID: 27334721 [TBL] [Abstract][Full Text] [Related]
43. Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa. Girard F; Vachon V; Préfontaine G; Marceau L; Su Y; Larouche G; Vincent C; Schwartz JL; Masson L; Laprade R Appl Environ Microbiol; 2008 May; 74(9):2565-72. PubMed ID: 18326669 [TBL] [Abstract][Full Text] [Related]
44. Molecular characterisation of Bacillus thuringiensis strain MEB4 highly toxic to the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Abdelmalek N; Sellami S; Ben Kridis A; Tounsi S; Rouis S Pest Manag Sci; 2016 May; 72(5):913-21. PubMed ID: 26103535 [TBL] [Abstract][Full Text] [Related]
45. Lipid-induced pore formation of the Bacillus thuringiensis Cry1Aa insecticidal toxin. Vié V; Van Mau N; Pomarède P; Dance C; Schwartz JL; Laprade R; Frutos R; Rang C; Masson L; Heitz F; Le Grimellec C J Membr Biol; 2001 Apr; 180(3):195-203. PubMed ID: 11337891 [TBL] [Abstract][Full Text] [Related]
46. Knockout of three aminopeptidase N genes does not affect susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. Wang J; Zuo YY; Li LL; Wang H; Liu SY; Yang YH; Wu YD Insect Sci; 2020 Jun; 27(3):440-448. PubMed ID: 30767423 [TBL] [Abstract][Full Text] [Related]
47. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome. Jiang J; Huang Y; Shu C; Soberón M; Bravo A; Liu C; Song F; Lai J; Zhang J Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389549 [TBL] [Abstract][Full Text] [Related]
48. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Oestergaard J; Ehlers RU; Martínez-Ramírez AC; Real MD Appl Environ Microbiol; 2007 Jun; 73(11):3623-9. PubMed ID: 17416690 [TBL] [Abstract][Full Text] [Related]
49. N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin. Bravo A; Sanchez J; Kouskoura T; Crickmore N J Biol Chem; 2002 Jul; 277(27):23985-7. PubMed ID: 12019259 [TBL] [Abstract][Full Text] [Related]
50. Study of the Khorramnejad A; Domínguez-Arrizabalaga M; Caballero P; Escriche B; Bel Y Toxins (Basel); 2020 Feb; 12(2):. PubMed ID: 32098045 [No Abstract] [Full Text] [Related]
51. An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae). Fernandez-Luna MT; Lanz-Mendoza H; Gill SS; Bravo A; Soberon M; Miranda-Rios J Environ Microbiol; 2010 Mar; 12(3):746-57. PubMed ID: 20002140 [TBL] [Abstract][Full Text] [Related]
52. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. Vachon V; Laprade R; Schwartz JL J Invertebr Pathol; 2012 Sep; 111(1):1-12. PubMed ID: 22617276 [TBL] [Abstract][Full Text] [Related]
53. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Bravo A; Gill SS; Soberón M Toxicon; 2007 Mar; 49(4):423-35. PubMed ID: 17198720 [TBL] [Abstract][Full Text] [Related]
54. Proteolytic processing of Bacillus thuringiensis toxin Cry1Ab in rice brown planthopper, Nilaparvata lugens (Stål). Shao E; Liu S; Lin L; Guan X J Invertebr Pathol; 2013 Nov; 114(3):255-7. PubMed ID: 24021715 [TBL] [Abstract][Full Text] [Related]
55. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. Schwartz JL; Lu YJ; Söhnlein P; Brousseau R; Laprade R; Masson L; Adang MJ FEBS Lett; 1997 Jul; 412(2):270-6. PubMed ID: 9256233 [TBL] [Abstract][Full Text] [Related]
56. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm. Ocelotl J; Sánchez J; Arroyo R; García-Gómez BI; Gómez I; Unnithan GC; Tabashnik BE; Bravo A; Soberón M PLoS One; 2015; 10(12):e0144086. PubMed ID: 26633693 [TBL] [Abstract][Full Text] [Related]
57. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Gómez I; Pardo-López L; Muñoz-Garay C; Fernandez LE; Pérez C; Sánchez J; Soberón M; Bravo A Peptides; 2007 Jan; 28(1):169-73. PubMed ID: 17145116 [TBL] [Abstract][Full Text] [Related]
58. Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Upadhyay SK; Singh PK Biotechnol Lett; 2011 Oct; 33(10):2027-36. PubMed ID: 21660568 [TBL] [Abstract][Full Text] [Related]
59. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Ocelotl J; Sánchez J; Gómez I; Tabashnik BE; Bravo A; Soberón M Sci Rep; 2017 May; 7(1):2386. PubMed ID: 28539590 [TBL] [Abstract][Full Text] [Related]