BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28623374)

  • 41. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS.
    Margarit SM; Sondermann H; Hall BE; Nagar B; Hoelz A; Pirruccello M; Bar-Sagi D; Kuriyan J
    Cell; 2003 Mar; 112(5):685-95. PubMed ID: 12628188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The conversion of eIF-2.GDP to eIF-2.GTP by eIF-2B requires Met-tRNA(fMet).
    Gross M; Rubino MS; Hessefort SM
    Biochem Biophys Res Commun; 1991 Dec; 181(3):1500-7. PubMed ID: 1764100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural analysis of autoinhibition in the Ras activator Son of sevenless.
    Sondermann H; Soisson SM; Boykevisch S; Yang SS; Bar-Sagi D; Kuriyan J
    Cell; 2004 Oct; 119(3):393-405. PubMed ID: 15507210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Substrate and product structural requirements for binding of nucleotides to H-ras p21: the mechanism of discrimination between guanosine and adenosine nucleotides.
    Rensland H; John J; Linke R; Simon I; Schlichting I; Wittinghofer A; Goody RS
    Biochemistry; 1995 Jan; 34(2):593-9. PubMed ID: 7819254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5'-triphosphate hydrolysis of p21ras.
    Schweins T; Geyer M; Kalbitzer HR; Wittinghofer A; Warshel A
    Biochemistry; 1996 Nov; 35(45):14225-31. PubMed ID: 8916907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The mechanism of Ras GTPase activation by neurofibromin.
    Phillips RA; Hunter JL; Eccleston JF; Webb MR
    Biochemistry; 2003 Apr; 42(13):3956-65. PubMed ID: 12667087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential dynamics of RAS isoforms in GDP- and GTP-bound states.
    Kapoor A; Travesset A
    Proteins; 2015 Jun; 83(6):1091-106. PubMed ID: 25846136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the active site of p21 ras by electron spin-echo envelope modulation spectroscopy with selective labeling: comparisons between GDP and GTP forms.
    Halkides CJ; Farrar CT; Larsen RG; Redfield AG; Singel DJ
    Biochemistry; 1994 Apr; 33(13):4019-35. PubMed ID: 8142406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutant-Specific Targeting of Ras G12C Activity by Covalently Reacting Small Molecules.
    Goody RS; Müller MP; Rauh D
    Cell Chem Biol; 2019 Oct; 26(10):1338-1348. PubMed ID: 31378709
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Locking GTPases covalently in their functional states.
    Wiegandt D; Vieweg S; Hofmann F; Koch D; Li F; Wu YW; Itzen A; Müller MP; Goody RS
    Nat Commun; 2015 Jul; 6():7773. PubMed ID: 26178622
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42.
    Kintscher C; Groemping Y
    J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of p21Ras S-nitrosylation and kinetics of nitric oxide-mediated guanine nucleotide exchange.
    Heo J; Campbell SL
    Biochemistry; 2004 Mar; 43(8):2314-22. PubMed ID: 14979728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro, Vav is a regulated guanine nucleotide dissociation inhibitor for Ras.
    Han J; Das B; Broek D
    Immunol Lett; 2002 Jan; 80(1):1-2. PubMed ID: 11716957
    [No Abstract]   [Full Text] [Related]  

  • 54. Simulating GTP:Mg and GDP:Mg with a simple force field: a structural and thermodynamic analysis.
    Simonson T; Satpati P
    J Comput Chem; 2013 Apr; 34(10):836-46. PubMed ID: 23280996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical Control of the GTP Affinity of K-Ras(G12C) by a Photoswitchable Inhibitor.
    Ge Z; Yang Z; Liang J; Dong D; Zhu M
    Chembiochem; 2019 Dec; 20(23):2916-2920. PubMed ID: 31219673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ras-guanine nucleotide complexes: A UV spectral deconvolution method to analyze protein concentration, nucleotide stoichiometry, and purity.
    Swisher GH; Hannan JP; Cordaro NJ; Erbse AH; Falke JJ
    Anal Biochem; 2021 Apr; 618():114066. PubMed ID: 33485819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adapting recombinant bacterial alkaline phosphatase for nucleotide exchange of small GTPases.
    Frank PH; Hong M; Higgins B; Perkins S; Taylor T; Wall VE; Drew M; Waybright T; Gillette W; Esposito D; Messing S
    Protein Expr Purif; 2024 Jun; 218():106446. PubMed ID: 38395209
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proof of concept for poor inhibitor binding and efficient formation of covalent adducts of KRAS
    Khrenova MG; Kulakova AM; Nemukhin AV
    Org Biomol Chem; 2020 Apr; 18(16):3069-3081. PubMed ID: 32101243
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition.
    Agola JO; Hong L; Surviladze Z; Ursu O; Waller A; Strouse JJ; Simpson DS; Schroeder CE; Oprea TI; Golden JE; Aubé J; Buranda T; Sklar LA; Wandinger-Ness A
    ACS Chem Biol; 2012 Jun; 7(6):1095-108. PubMed ID: 22486388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method to determine 18 O kinetic isotope effects in the hydrolysis of nucleotide triphosphates.
    Du X; Ferguson K; Gregory R; Sprang SR
    Anal Biochem; 2008 Jan; 372(2):213-21. PubMed ID: 17963711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.