These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28623452)

  • 1. Enhanced visualization of the retinal vasculature using depth information in OCT.
    de Moura J; Novo J; Charlón P; Barreira N; Ortega M
    Med Biol Eng Comput; 2017 Dec; 55(12):2209-2225. PubMed ID: 28623452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artery/Vein Vessel Tree Identification in Near-Infrared Reflectance Retinographies.
    de Moura J; Novo J; Rouco J; Charlón P; Ortega M
    J Digit Imaging; 2019 Dec; 32(6):947-962. PubMed ID: 31144147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal vessel optical coherence tomography images for anemia screening.
    Chen Z; Mo Y; Ouyang P; Shen H; Li D; Zhao R
    Med Biol Eng Comput; 2019 Apr; 57(4):953-966. PubMed ID: 30506116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-low reflectivity enhancement based retinal vessel projection for SD-OCT images.
    Chen Q; Niu S; Yuan S; Fan W; Liu Q
    Med Phys; 2016 Oct; 43(10):5464. PubMed ID: 27782707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agreement study between color and IR retinal images based on retinal vasculature morphological parameters.
    Ajaz A; Aliahmad B; Kumar H; Sarossy M; Kumar DK
    BMC Ophthalmol; 2019 Jan; 19(1):27. PubMed ID: 30665394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated layer segmentation of optical coherence tomography images.
    Lu S; Cheung CY; Liu J; Lim JH; Leung CK; Wong TY
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2605-8. PubMed ID: 20595078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.
    Kafieh R; Rabbani H; Hajizadeh F; Ommani M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2815-23. PubMed ID: 23722446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking the optic nervehead in OCT video using dual eigenspaces and an adaptive vascular distribution model.
    Koozekanani D; Boyer KL; Roberts C
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1519-36. PubMed ID: 14649743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image Analysis of Optical Coherence Tomography Angiography.
    Coscas G; Lupidi M; Coscas F
    Dev Ophthalmol; 2016; 56():30-6. PubMed ID: 27023365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography (OCT) angiography findings in retinal arterial macroaneurysms.
    Alnawaiseh M; Schubert F; Nelis P; Wirths G; Rosentreter A; Eter N
    BMC Ophthalmol; 2016 Jul; 16():120. PubMed ID: 27449320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZEISS Angioplex™ Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects.
    Rosenfeld PJ; Durbin MK; Roisman L; Zheng F; Miller A; Robbins G; Schaal KB; Gregori G
    Dev Ophthalmol; 2016; 56():18-29. PubMed ID: 27023249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation.
    Chan G; Balaratnasingam C; Xu J; Mammo Z; Han S; Mackenzie P; Merkur A; Kirker A; Albiani D; Sarunic MV; Yu DY
    Microvasc Res; 2015 Jul; 100():32-9. PubMed ID: 25917012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heidelberg Spectralis Optical Coherence Tomography Angiography: Technical Aspects.
    Coscas G; Lupidi M; Coscas F
    Dev Ophthalmol; 2016; 56():1-5. PubMed ID: 27022921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular fundus reference images from optical coherence tomography.
    Guimarães P; Rodrigues P; Lobo C; Leal S; Figueira J; Serranho P; Bernardes R
    Comput Med Imaging Graph; 2014 Jul; 38(5):381-9. PubMed ID: 24631317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm.
    Motaghiannezam R; Schwartz DM; Fraser SE
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2337-48. PubMed ID: 22410568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of retinal perfusion in mice using optical coherence tomography angiography.
    Alnawaiseh M; Brand C; Bormann E; Wistuba J; Eter N; Heiduschka P
    Exp Eye Res; 2017 Nov; 164():151-156. PubMed ID: 28889963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Technical principles of OCT angiography].
    Fang PP; Harmening WM; Müller PL; Lindner M; Krohne TU; Holz FG
    Ophthalmologe; 2016 Jan; 113(1):6-13. PubMed ID: 26682903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surrogate-Assisted Retinal OCT Image Classification Based on Convolutional Neural Networks.
    Rong Y; Xiang D; Zhu W; Yu K; Shi F; Fan Z; Chen X
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):253-263. PubMed ID: 29994378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clinical applications of OCT angiography].
    Fang PP; Lindner M; Steinberg JS; Müller PL; Gliem M; Charbel Issa P; Krohne TU; Holz FG
    Ophthalmologe; 2016 Jan; 113(1):14-22. PubMed ID: 26694492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive Visualization and Analysis of the Human Parafoveal Capillary Network Using Swept Source OCT Optical Microangiography.
    Kuehlewein L; Tepelus TC; An L; Durbin MK; Srinivas S; Sadda SR
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3984-8. PubMed ID: 26087363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.