BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28623474)

  • 1. Epithelial Fluid Transport is Due to Electro-osmosis (80%), Plus Osmosis (20%).
    Fischbarg J; Hernandez JA; Rubashkin AA; Iserovich P; Cacace VI; Kusnier CF
    J Membr Biol; 2017 Jun; 250(3):327-333. PubMed ID: 28623474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium.
    Sánchez JM; Li Y; Rubashkin A; Iserovich P; Wen Q; Ruberti JW; Smith RW; Rittenband D; Kuang K; Diecke FP; Fischbarg J
    J Membr Biol; 2002 May; 187(1):37-50. PubMed ID: 12029376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal endothelium transports fluid in the absence of net solute transport.
    Diecke FP; Ma L; Iserovich P; Fischbarg J
    Biochim Biophys Acta; 2007 Sep; 1768(9):2043-8. PubMed ID: 17597578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force.
    Fischbarg J; Diecke FP; Iserovich P; Rubashkin A
    J Membr Biol; 2006 Mar; 210(2):117-30. PubMed ID: 16868674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of electrolyte and fluid transport across corneal endothelium.
    Fischbarg J; Diecke FP
    J Membr Biol; 2005 Jan; 203(1):41-56. PubMed ID: 15834688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.
    Sanchez JM; Cacace V; Kusnier CF; Nelson R; Rubashkin AA; Iserovich P; Fischbarg J
    J Membr Biol; 2016 Aug; 249(4):469-73. PubMed ID: 26989056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of fluid transport across corneal endothelium and epithelia in general.
    Fischbarg J
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):30-40. PubMed ID: 14598383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquaporins and fluid transport: an evolving relationship.
    Fischbarg J
    Cell Mol Biol (Noisy-le-grand); 2006 Oct; 52(7):28-33. PubMed ID: 17543218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative permeabilities of the paracellular and transcellular pathways of corneal endothelial layers.
    Diecke FP; Cacace VI; Montalbetti N; Ma L; Kuang K; Iserovich P; Fischbarg J
    J Membr Biol; 2011 Jul; 242(1):41-51. PubMed ID: 21713417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.
    Fischbarg J
    Physiol Rev; 2010 Oct; 90(4):1271-90. PubMed ID: 20959616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions.
    Rubashkin A; Iserovich P; Hernández JA; Fischbarg J
    J Membr Biol; 2005 Dec; 208(3):251-63. PubMed ID: 16648941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular [Na+], Na+ pathways, and fluid transport in cultured bovine corneal endothelial cells.
    Kuang K; Li Y; Yiming M; Sánchez JM; Iserovich P; Cragoe EJ; Diecke FP; Fischbarg J
    Exp Eye Res; 2004 Jul; 79(1):93-103. PubMed ID: 15183104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AVP dynamically increases paracellular Na
    Himmerkus N; Plain A; Marques RD; Sonntag SR; Paliege A; Leipziger J; Bleich M
    Pflugers Arch; 2017 Jan; 469(1):149-158. PubMed ID: 27924355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling between apical and paracellular transport processes.
    Kapus A; Szászi K
    Biochem Cell Biol; 2006 Dec; 84(6):870-80. PubMed ID: 17215874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic and electroosmotic fluid transport across the retinal pigment epithelium: A mathematical model.
    Dvoriashyna M; Foss AJE; Gaffney EA; Jensen OE; Repetto R
    J Theor Biol; 2018 Nov; 456():233-248. PubMed ID: 30096403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical models of fluid and solute transport in peritoneal dialysis.
    Waniewski J
    Pol Merkur Lekarski; 2003 Oct; 15(88):316-8. PubMed ID: 14974356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium, potassium, two chloride cotransport in corneal endothelium: characterization and possible role in volume regulation and fluid transport.
    Diecke FP; Zhu Z; Kang F; Kuang K; Fischbarg J
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):104-10. PubMed ID: 9430551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What do aquaporin knockout studies tell us about fluid transport in epithelia?
    Maclaren OJ; Sneyd J; Crampin EJ
    J Membr Biol; 2013 Apr; 246(4):297-305. PubMed ID: 23430220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memristive model of electro-osmosis in skin.
    Johnsen GK; Lütken CA; Martinsen OG; Grimnes S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031916. PubMed ID: 21517534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism.
    Essig A
    Biophys J; 1982 May; 38(2):143-52. PubMed ID: 6284264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.