These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28623503)

  • 1. Investigating the Suitability of Carbon Nanotube Reinforced Polymer in Transcatheter Valve Applications.
    Rozeik MM; Wheatley DJ; Gourlay T
    Cardiovasc Eng Technol; 2017 Sep; 8(3):357-367. PubMed ID: 28623503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyurethane heart valve durability: effects of leaflet thickness and material.
    Bernacca GM; Mackay TG; Gulbransen MJ; Donn AW; Wheatley DJ
    Int J Artif Organs; 1997 Jun; 20(6):327-31. PubMed ID: 9259209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention of polyurethane valve cusp calcification with covalently attached bisphosphonate diethylamino moieties.
    Alferiev I; Stachelek SJ; Lu Z; Fu AL; Sellaro TL; Connolly JM; Bianco RW; Sacks MS; Levy RJ
    J Biomed Mater Res A; 2003 Aug; 66(2):385-95. PubMed ID: 12889009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural stability of novel composite heart valve prostheses - Fatigue and wear performance.
    Zhou H; Wu L; Wu Q
    Biomed Pharmacother; 2021 Apr; 136():111288. PubMed ID: 33493869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro function and durability of a polyurethane heart valve: material considerations.
    Bernacca GM; Mackay TG; Wheatley DJ
    J Heart Valve Dis; 1996 Sep; 5(5):538-42. PubMed ID: 8894995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of polyurethane heart valves: effects on fatigue life and calcification.
    Bernacca GM; Wheatley DJ
    Int J Artif Organs; 1998 Dec; 21(12):814-9. PubMed ID: 9988359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the curvatures and bending strains in open trileaflet heart valves.
    Corden J; David T; Fisher J
    Proc Inst Mech Eng H; 1995; 209(2):121-8. PubMed ID: 7495427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective reinforcement in carbon nanotube-polymer composites.
    Wang W; Ciselli P; Kuznetsov E; Peijs T; Barber AH
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1613-26. PubMed ID: 18192168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and morphological study of biostable polyurethane heart valve leaflets explanted from sheep.
    Bernacca GM; Straub I; Wheatley DJ
    J Biomed Mater Res; 2002 Jul; 61(1):138-45. PubMed ID: 12001256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.
    Yuan W; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2065-73. PubMed ID: 22432973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcatheter heart valve crimping and the protecting effects of a polyester cuff.
    Guidoin R; Zegdi R; Lin J; Mao J; Rochette-Drouin O; How D; Guan X; Bruneval P; Wang L; Germain L; Zhang Z
    Morphologie; 2016 Dec; 100(331):234-244. PubMed ID: 27461102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour.
    Mohammadi H
    Proc Inst Mech Eng H; 2011 Jul; 225(7):718-22. PubMed ID: 21870379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid textile heart valve prosthesis: preliminary in vitro evaluation.
    Vaesken A; Pidancier C; Chakfe N; Heim F
    Biomed Tech (Berl); 2018 Jun; 63(3):333-339. PubMed ID: 27658127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New polyurethane heart valve prosthesis: design, manufacture and evaluation.
    Mackay TG; Wheatley DJ; Bernacca GM; Fisher AC; Hindle CS
    Biomaterials; 1996 Oct; 17(19):1857-63. PubMed ID: 8889065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure.
    Bernacca GM; Mackay TG; Wilkinson R; Wheatley DJ
    J Biomed Mater Res; 1997 Mar; 34(3):371-9. PubMed ID: 9086407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unzipped multiwalled carbon nanotube oxide/multiwalled carbon nanotube hybrids for polymer reinforcement.
    Fan J; Shi Z; Tian M; Wang J; Yin J
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5956-65. PubMed ID: 23121120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.
    Hou Y; Tang J; Zhang H; Qian C; Feng Y; Liu J
    ACS Nano; 2009 May; 3(5):1057-62. PubMed ID: 19397293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.