These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28623576)

  • 1. Inducible Promoter Systems for Gene Perturbation Experiments in Arabidopsis.
    Thomson B; Graciet E; Wellmer F
    Methods Mol Biol; 2017; 1629():15-25. PubMed ID: 28623576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A floral induction system for the study of early Arabidopsis flower development.
    O'Maoiléidigh DS; Wellmer F
    Methods Mol Biol; 2014; 1110():307-14. PubMed ID: 24395265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Floral Induction Systems for the Study of Arabidopsis Flower Development.
    Ó'Maoiléidigh D; Thomson B; Wellmer F
    Methods Mol Biol; 2023; 2686():285-292. PubMed ID: 37540363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations.
    Ó'Maoiléidigh DS; Thomson B; Raganelli A; Wuest SE; Ryan PT; Kwaśniewska K; Carles CC; Graciet E; Wellmer F
    Plant J; 2015 Jul; 83(2):344-58. PubMed ID: 25990192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.
    Tang M; Tao YB; Fu Q; Song Y; Niu L; Xu ZF
    Sci Rep; 2016 Nov; 6():37306. PubMed ID: 27869146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation.
    Ryan PT; Ó'Maoiléidigh DS; Drost HG; Kwaśniewska K; Gabel A; Grosse I; Graciet E; Quint M; Wellmer F
    BMC Genomics; 2015 Jul; 16(1):488. PubMed ID: 26126740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary conservation of microRNA regulatory programs in plant flower development.
    Luo Y; Guo Z; Li L
    Dev Biol; 2013 Aug; 380(2):133-44. PubMed ID: 23707900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of gene expression during early Arabidopsis flower development.
    Wellmer F; Alves-Ferreira M; Dubois A; Riechmann JL; Meyerowitz EM
    PLoS Genet; 2006 Jul; 2(7):e117. PubMed ID: 16789830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development].
    Wang LL; Liang HM; Pang JL; Zhu MY
    Yi Chuan; 2004 Jan; 26(1):137-42. PubMed ID: 15626683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Tzeng TY; Hsiao CC; Chi PJ; Yang CH
    Plant Physiol; 2003 Nov; 133(3):1091-101. PubMed ID: 14526112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis.
    Chen MK; Hsu WH; Lee PF; Thiruvengadam M; Chen HI; Yang CH
    Plant J; 2011 Oct; 68(1):168-85. PubMed ID: 21689171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Liu C; Chen H; Er HL; Soo HM; Kumar PP; Han JH; Liou YC; Yu H
    Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana.
    Mlotshwa S; Yang Z; Kim Y; Chen X
    Plant Mol Biol; 2006 Jul; 61(4-5):781-93. PubMed ID: 16897492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Lal S; Pacis LB; Smith HM
    Mol Plant; 2011 Nov; 4(6):1123-32. PubMed ID: 21653282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of flowering time by the miR156-mediated age pathway.
    Wang JW
    J Exp Bot; 2014 Sep; 65(17):4723-30. PubMed ID: 24958896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation.
    Bhagwat B; Chi M; Su L; Tang H; Tang G; Xiang Y
    J Genet Genomics; 2013 May; 40(5):261-70. PubMed ID: 23706301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.
    Tao YB; He LL; Niu L; Xu ZF
    Planta; 2016 Aug; 244(2):467-78. PubMed ID: 27095108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene networks controlling the initiation of flower development.
    Wellmer F; Riechmann JL
    Trends Genet; 2010 Dec; 26(12):519-27. PubMed ID: 20947199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide expression profiling and identification of gene activities during early flower development in Arabidopsis.
    Zhang X; Feng B; Zhang Q; Zhang D; Altman N; Ma H
    Plant Mol Biol; 2005 Jun; 58(3):401-19. PubMed ID: 16021403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of flowering time and floral patterning by miR172.
    Zhu QH; Helliwell CA
    J Exp Bot; 2011 Jan; 62(2):487-95. PubMed ID: 20952628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.