BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28623695)

  • 1. Injectable, cytocompatible, elastic, free radical scavenging and electroconductive hydrogel for cardiac cell encapsulation.
    Komeri R; Muthu J
    Colloids Surf B Biointerfaces; 2017 Sep; 157():381-390. PubMed ID: 28623695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical scavenging injectable hydrogels for regenerative therapy.
    Komeri R; Thankam FG; Muthu J
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():100-110. PubMed ID: 27987653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ crosslinkable elastomeric hydrogel for long-term cell encapsulation for cardiac applications.
    Komeri R; Muthu J
    J Biomed Mater Res A; 2016 Dec; 104(12):2936-2944. PubMed ID: 27409990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversibly Assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D Cell Culture.
    Xu Y; Cui M; Patsis PA; Günther M; Yang X; Eckert K; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7715-7724. PubMed ID: 30714715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.
    Selvam S; Pithapuram MV; Victor SP; Muthu J
    Colloids Surf B Biointerfaces; 2015 Feb; 126():35-43. PubMed ID: 25543981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability.
    Thankam FG; Muthu J
    J Mech Behav Biomed Mater; 2014 Jul; 35():111-22. PubMed ID: 24762858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE; Menzies DJ; Cameron AR; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.
    Testore D; Zoso A; Kortaberria G; Sangermano M; Chiono V
    Front Bioeng Biotechnol; 2022; 10():897575. PubMed ID: 35814009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Standing 3D-Printed PEGDA-PANIs Electroconductive Hydrogel Composites for pH Monitoring.
    Carcione R; Pescosolido F; Montaina L; Toschi F; Orlanducci S; Tamburri E; Battistoni S
    Gels; 2023 Sep; 9(10):. PubMed ID: 37888357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
    Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C
    Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid alginate-polyester bimodal network hydrogel for tissue engineering--Influence of structured water on long-term cellular growth.
    Finosh GT; Jayabalan M; Vandana S; Raghu KG
    Colloids Surf B Biointerfaces; 2015 Nov; 135():855-864. PubMed ID: 25843368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.
    Gnanaprakasam Thankam F; Muthu J
    Carbohydr Polym; 2014 Nov; 112():235-44. PubMed ID: 25129740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroactive and antioxidant injectable in-situ forming hydrogels with tunable properties by polyethylenimine and polyaniline for nerve tissue engineering.
    Karimi-Soflou R; Nejati S; Karkhaneh A
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111565. PubMed ID: 33445075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizations of hyaluronate-based terpolymeric hydrogel synthesized via free radical polymerization mechanism for biomedical applications.
    Das D; Pham TTH; Noh I
    Colloids Surf B Biointerfaces; 2018 Oct; 170():64-75. PubMed ID: 29879635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and survival of cells in biosynthetic poly vinyl alcohol-alginate IPN hydrogels for cardiac applications.
    Gnanaprakasam Thankam F; Muthu J; Sankar V; Kozhiparambil Gopal R
    Colloids Surf B Biointerfaces; 2013 Jul; 107():137-45. PubMed ID: 23475061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.
    Akdemir ZS; Akçakaya H; Kahraman MV; Ceyhan T; Kayaman-Apohan N; Güngör A
    Macromol Biosci; 2008 Sep; 8(9):852-62. PubMed ID: 18504803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.
    Dong R; Zhao X; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17138-50. PubMed ID: 27311127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.
    Truong VX; Hun ML; Li F; Chidgey AP; Forsythe JS
    Biomater Sci; 2016 Jul; 4(7):1123-31. PubMed ID: 27217071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.