These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 28623839)
81. Involvement of AOX and UCP pathways in the post-harvest ripening of papaya fruits. Oliveira MG; Mazorra LM; Souza AF; Silva GM; Correa SF; Santos WC; Saraiva KD; Teixeira AJ; Melo DF; Silva MG; Silva MA; Arrabaça JD; Costa JH; Oliveira JG J Plant Physiol; 2015 Sep; 189():42-50. PubMed ID: 26513459 [TBL] [Abstract][Full Text] [Related]
82. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Turk H Plant Physiol Biochem; 2019 Aug; 141():415-422. PubMed ID: 31229926 [TBL] [Abstract][Full Text] [Related]
83. Chloroplast-located BjFer1 together with anti-oxidative genes alleviate hydrogen peroxide and hydroxyl radical injury in cytoplasmic male-sterile Brassica juncea. Yang J; Liu S; Yang X; Zhang M Mol Biol Rep; 2012 Apr; 39(4):4169-76. PubMed ID: 21773942 [TBL] [Abstract][Full Text] [Related]
84. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Lin R; Wang X; Luo Y; Du W; Guo H; Yin D Chemosphere; 2007 Aug; 69(1):89-98. PubMed ID: 17568654 [TBL] [Abstract][Full Text] [Related]
85. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana. Zhang M; Zhang GQ; Kang HH; Zhou SM; Wang W Plant Cell Physiol; 2017 Oct; 58(10):1673-1688. PubMed ID: 29016965 [TBL] [Abstract][Full Text] [Related]
86. Physiological impact of mitochondrial alternative oxidase on photosynthesis and growth in Arabidopsis thaliana. Yoshida K; Watanabe CK; Terashima I; Noguchi K Plant Cell Environ; 2011 Nov; 34(11):1890-9. PubMed ID: 21707657 [TBL] [Abstract][Full Text] [Related]
87. Effects of di-n-butyl phthalate on photosynthetic performance and oxidative damage in different growth stages of wheat in cinnamon soils. Gao M; Guo Z; Dong Y; Song Z Environ Pollut; 2019 Jul; 250():357-365. PubMed ID: 31009929 [TBL] [Abstract][Full Text] [Related]
89. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. Pastore D; Trono D; Laus MN; Di Fonzo N; Flagella Z J Exp Bot; 2007; 58(2):195-210. PubMed ID: 17261694 [TBL] [Abstract][Full Text] [Related]
90. Maintaining homeostasis by controlled alternatives for energy distribution in plant cells under changing conditions of supply and demand. Scheibe R Photosynth Res; 2019 Mar; 139(1-3):81-91. PubMed ID: 30203365 [TBL] [Abstract][Full Text] [Related]
91. Mitochondrial alternative cyanide-resistant oxidase is involved in an increase of heat stress tolerance in spring wheat. Borovik OA; Grabelnych OI J Plant Physiol; 2018 Dec; 231():310-317. PubMed ID: 30368229 [TBL] [Abstract][Full Text] [Related]
92. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. Vanlerberghe GC; Martyn GD; Dahal K Physiol Plant; 2016 Jul; 157(3):322-37. PubMed ID: 27080742 [TBL] [Abstract][Full Text] [Related]
93. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Vanlerberghe GC; Dahal K; Alber NA; Chadee A Mitochondrion; 2020 May; 52():197-211. PubMed ID: 32278748 [TBL] [Abstract][Full Text] [Related]
94. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. Bartoli CG; Gomez F; Gergoff G; Guiamét JJ; Puntarulo S J Exp Bot; 2005 May; 56(415):1269-76. PubMed ID: 15781442 [TBL] [Abstract][Full Text] [Related]
95. Genomic structure and expression of alternative oxidase genes in legumes. Sweetman C; Soole KL; Jenkins CLD; Day DA Plant Cell Environ; 2019 Jan; 42(1):71-84. PubMed ID: 29424926 [TBL] [Abstract][Full Text] [Related]
96. Salt Tolerance Assessment in Vasilik MP; Belova NI; Lazareva EM; Kononenko NV; Fedoreyeva LI Front Biosci (Landmark Ed); 2024 Apr; 29(4):150. PubMed ID: 38682196 [TBL] [Abstract][Full Text] [Related]
97. Alternative Respiratory Pathway Component Genes (AOX and ND) in Rice and Barley and Their Response to Stress. Wanniarachchi VR; Dametto L; Sweetman C; Shavrukov Y; Day DA; Jenkins CLD; Soole KL Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29558397 [TBL] [Abstract][Full Text] [Related]
98. Distinctive mitochondrial and chloroplast components contributing to the maintenance of carbon balance during plant growth at elevated CO Chadee A; Vanlerberghe GC Plant Signal Behav; 2020 Oct; 15(10):1795395. PubMed ID: 32705929 [TBL] [Abstract][Full Text] [Related]
99. The stay-green phenotype of TaNAM-RNAi wheat plants is associated with maintenance of chloroplast structure and high enzymatic antioxidant activity. Checovich ML; Galatro A; Moriconi JI; Simontacchi M; Dubcovsky J; Santa-María GE Plant Physiol Biochem; 2016 Jul; 104():257-65. PubMed ID: 27061370 [TBL] [Abstract][Full Text] [Related]
100. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. Jethva J; Lichtenauer S; Schmidt-Schippers R; Steffen-Heins A; Poschet G; Wirtz M; van Dongen JT; Eirich J; Finkemeier I; Bilger W; Schwarzländer M; Sauter M New Phytol; 2023 Apr; 238(1):96-112. PubMed ID: 36464787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]