These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 28623886)
1. EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction. Stahl K; Schneider M; Brock O BMC Bioinformatics; 2017 Jun; 18(1):303. PubMed ID: 28623886 [TBL] [Abstract][Full Text] [Related]
2. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. Wang S; Sun S; Li Z; Zhang R; Xu J PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090 [TBL] [Abstract][Full Text] [Related]
3. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Jones DT; Singh T; Kosciolek T; Tetchner S Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331 [TBL] [Abstract][Full Text] [Related]
4. Combining physicochemical and evolutionary information for protein contact prediction. Schneider M; Brock O PLoS One; 2014; 9(10):e108438. PubMed ID: 25338092 [TBL] [Abstract][Full Text] [Related]
5. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Adhikari B; Hou J; Cheng J Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185 [TBL] [Abstract][Full Text] [Related]
6. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy. Xiong D; Zeng J; Gong H Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263 [TBL] [Abstract][Full Text] [Related]
7. Predicting protein residue-residue contacts using random forests and deep networks. Luttrell J; Liu T; Zhang C; Wang Z BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477 [TBL] [Abstract][Full Text] [Related]
8. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Hou J; Wu T; Cao R; Cheng J Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027 [TBL] [Abstract][Full Text] [Related]
10. RBO Aleph: leveraging novel information sources for protein structure prediction. Mabrouk M; Putz I; Werner T; Schneider M; Neeb M; Bartels P; Brock O Nucleic Acids Res; 2015 Jul; 43(W1):W343-8. PubMed ID: 25897112 [TBL] [Abstract][Full Text] [Related]
11. Analysis of deep learning methods for blind protein contact prediction in CASP12. Wang S; Sun S; Xu J Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538 [TBL] [Abstract][Full Text] [Related]
12. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning. Adhikari B; Hou J; Cheng J Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157 [TBL] [Abstract][Full Text] [Related]
13. Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age. Schaarschmidt J; Monastyrskyy B; Kryshtafovych A; Bonvin AMJJ Proteins; 2018 Mar; 86 Suppl 1(Suppl Suppl 1):51-66. PubMed ID: 29071738 [TBL] [Abstract][Full Text] [Related]
14. A two-stage approach for improved prediction of residue contact maps. Vullo A; Walsh I; Pollastri G BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808 [TBL] [Abstract][Full Text] [Related]
15. BetaDL: A protein beta-sheet predictor utilizing a deep learning model and independent set solution. Dehghani T; Naghibzadeh M; Eghdami M Comput Biol Med; 2019 Jan; 104():241-249. PubMed ID: 30530227 [TBL] [Abstract][Full Text] [Related]
16. Analysis of distance-based protein structure prediction by deep learning in CASP13. Xu J; Wang S Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916 [TBL] [Abstract][Full Text] [Related]
17. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13. Kandathil SM; Greener JG; Jones DT Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436 [TBL] [Abstract][Full Text] [Related]
18. The evolution of contact prediction: evidence that contact selection in statistical contact prediction is changing. Chonofsky M; de Oliveira SHP; Krawczyk K; Deane CM Bioinformatics; 2020 Mar; 36(6):1750-1756. PubMed ID: 31693112 [TBL] [Abstract][Full Text] [Related]
19. Accurate contact predictions using covariation techniques and machine learning. Kosciolek T; Jones DT Proteins; 2016 Sep; 84 Suppl 1(Suppl Suppl 1):145-51. PubMed ID: 26205532 [TBL] [Abstract][Full Text] [Related]
20. COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator. Rawi R; Mall R; Kunji K; El Anbari M; Aupetit M; Ullah E; Bensmail H BMC Bioinformatics; 2016 Dec; 17(1):533. PubMed ID: 27978812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]