These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Chromosome-Scale Genome Assembly of the Marine Oleaginous Diatom Fistulifera solaris. Maeda Y; Kobayashi R; Watanabe K; Yoshino T; Bowler C; Matsumoto M; Tanaka T Mar Biotechnol (NY); 2022 Aug; 24(4):788-800. PubMed ID: 35915286 [TBL] [Abstract][Full Text] [Related]
5. Assessment on the oil accumulation by knockdown of triacylglycerol lipase in the oleaginous diatom Fistulifera solaris. Maeda Y; Watanabe K; Kaha M; Yabu Y; Yoshino T; Matsumoto M; Tanaka T Sci Rep; 2021 Oct; 11(1):20905. PubMed ID: 34686744 [TBL] [Abstract][Full Text] [Related]
6. Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Tanaka T; Maeda Y; Veluchamy A; Tanaka M; Abida H; Maréchal E; Bowler C; Muto M; Sunaga Y; Tanaka M; Yoshino T; Taniguchi T; Fukuda Y; Nemoto M; Matsumoto M; Wong PS; Aburatani S; Fujibuchi W Plant Cell; 2015 Jan; 27(1):162-76. PubMed ID: 25634988 [TBL] [Abstract][Full Text] [Related]
7. Outdoor Cultivation of Marine Diatoms for Year-Round Production of Biofuels. Matsumoto M; Nojima D; Nonoyama T; Ikeda K; Maeda Y; Yoshino T; Tanaka T Mar Drugs; 2017 Mar; 15(4):. PubMed ID: 28346334 [TBL] [Abstract][Full Text] [Related]
8. Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp. in outdoor vertical bubble column and raceway-type bioreactors. Sato R; Maeda Y; Yoshino T; Tanaka T; Matsumoto M J Biosci Bioeng; 2014 Jun; 117(6):720-4. PubMed ID: 24388444 [TBL] [Abstract][Full Text] [Related]
9. Chloroplast-targeting protein expression in the oleaginous diatom Fistulifera solaris JPCC DA0580 toward metabolic engineering. Sunaga Y; Maeda Y; Yabuuchi T; Muto M; Yoshino T; Tanaka T J Biosci Bioeng; 2015 Jan; 119(1):28-34. PubMed ID: 25043335 [TBL] [Abstract][Full Text] [Related]
10. Characterization of oil body-associated proteins obtained from oil bodies with different sizes in oleaginous diatom Fistulifera solaris. Kaha M; Noda M; Maeda Y; Kaneko Y; Yoshino T; Tanaka T J Biosci Bioeng; 2023 May; 135(5):359-368. PubMed ID: 36935336 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of glycerol metabolism in the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to improve triacylglycerol productivity. Muto M; Tanaka M; Liang Y; Yoshino T; Matsumoto M; Tanaka T Biotechnol Biofuels; 2015; 8(1):4. PubMed ID: 25632299 [TBL] [Abstract][Full Text] [Related]
12. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. Tanaka T; Yabuuchi T; Maeda Y; Nojima D; Matsumoto M; Yoshino T Bioresour Technol; 2017 Dec; 245(Pt A):567-572. PubMed ID: 28898857 [TBL] [Abstract][Full Text] [Related]
13. Profiling of polar lipids in marine oleaginous diatom Fistulifera solaris JPCC DA0580: prediction of the potential mechanism for eicosapentaenoic acid-incorporation into triacylglycerol. Liang Y; Maeda Y; Yoshino T; Matsumoto M; Tanaka T Mar Drugs; 2014 May; 12(6):3218-30. PubMed ID: 24879545 [TBL] [Abstract][Full Text] [Related]
14. Oleosome-associated protein of the oleaginous diatom Fistulifera solaris contains an endoplasmic reticulum-targeting signal sequence. Maeda Y; Sunaga Y; Yoshino T; Tanaka T Mar Drugs; 2014 Jun; 12(7):3892-903. PubMed ID: 24983635 [TBL] [Abstract][Full Text] [Related]
15. Proteomics analysis of oil body-associated proteins in the oleaginous diatom. Nojima D; Yoshino T; Maeda Y; Tanaka M; Nemoto M; Tanaka T J Proteome Res; 2013 Nov; 12(11):5293-301. PubMed ID: 23879348 [TBL] [Abstract][Full Text] [Related]
16. A process design and productivity evaluation for oil production by indoor mass cultivation of a marine diatom, Fistulifera sp. JPCC DA0580. Satoh A; Ichii K; Matsumoto M; Kubota C; Nemoto M; Tanaka M; Yoshino T; Matsunaga T; Tanaka T Bioresour Technol; 2013 Jun; 137():132-8. PubMed ID: 23584413 [TBL] [Abstract][Full Text] [Related]
17. Highly Efficient Genetic Transformation Methods for the Marine Oleaginous Diatom Fistulifera solaris. Naser I; Yabu Y; Maeda Y; Tanaka T Mar Biotechnol (NY); 2023 Oct; 25(5):657-665. PubMed ID: 36512290 [TBL] [Abstract][Full Text] [Related]
18. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation. Yi Z; Xu M; Magnusdottir M; Zhang Y; Brynjolfsson S; Fu W Mar Drugs; 2015 Sep; 13(10):6138-51. PubMed ID: 26426027 [TBL] [Abstract][Full Text] [Related]
19. Different Responses of Photosynthesis to Nitrogen Starvation Between Highly Oil-Accumulative Diatoms, Fistulifera solaris and Mayamaea sp. JPCC CTDA0820. Nakayasu M; Amano M; Tanaka T; Shimakawa G; Matsuda Y Mar Biotechnol (NY); 2023 Apr; 25(2):272-280. PubMed ID: 36856914 [TBL] [Abstract][Full Text] [Related]
20. A two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine bloom-forming diatom Skeletonema costatum. Gao G; Wu M; Fu Q; Li X; Xu J Bioresour Technol; 2019 Oct; 289():121717. PubMed ID: 31279322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]