These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 28624669)
1. Neutron-activatable radionuclide cancer therapy using graphene oxide nanoplatelets. Kim J; Jay M Nucl Med Biol; 2017 Sep; 52():42-48. PubMed ID: 28624669 [TBL] [Abstract][Full Text] [Related]
2. Kim J; Luo ZX; Wu Y; Lu X; Jay M Carbon N Y; 2017 Jun; 117():92-99. PubMed ID: 28966368 [TBL] [Abstract][Full Text] [Related]
3. Bovine α-lactalbumin functionalized graphene oxide nano-sheet exhibits enhanced biocompatibility: A rational strategy for graphene-based targeted cancer therapy. Mahanta S; Paul S Colloids Surf B Biointerfaces; 2015 Oct; 134():178-87. PubMed ID: 26196090 [TBL] [Abstract][Full Text] [Related]
4. Fate of Organic Functionalities Conjugated to Theranostic Nanoparticles upon Their Activation. Martinelli J; Denkova AG; Arranja A; Terpstra BE; Zhang W; Djanashvili K Bioconjug Chem; 2016 Feb; 27(2):446-56. PubMed ID: 26619135 [TBL] [Abstract][Full Text] [Related]
5. Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer. Di Pasqua AJ; Yuan H; Chung Y; Kim JK; Huckle JE; Li C; Sadgrove M; Tran TH; Jay M; Lu X J Nucl Med; 2013 Jan; 54(1):111-6. PubMed ID: 23100452 [TBL] [Abstract][Full Text] [Related]
6. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600 [TBL] [Abstract][Full Text] [Related]
7. Neutron-activatable needles for radionuclide therapy of solid tumors. Kim J; Narayan RJ; Lu X; Jay M J Biomed Mater Res A; 2017 Dec; 105(12):3273-3280. PubMed ID: 28804994 [TBL] [Abstract][Full Text] [Related]
8. Polyethylene Glycol-Engrafted Graphene Oxide as Biocompatible Materials for Peptide Nucleic Acid Delivery into Cells. Baek A; Baek YM; Kim HM; Jun BH; Kim DE Bioconjug Chem; 2018 Feb; 29(2):528-537. PubMed ID: 29376329 [TBL] [Abstract][Full Text] [Related]
9. Preparation of neutron-activatable holmium nanoparticles for the treatment of ovarian cancer metastases. Di Pasqua AJ; Huckle JE; Kim JK; Chung Y; Wang AZ; Jay M; Lu X Small; 2012 Apr; 8(7):997-1000. PubMed ID: 22298503 [TBL] [Abstract][Full Text] [Related]
10. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. Xu Z; Wang S; Li Y; Wang M; Shi P; Huang X ACS Appl Mater Interfaces; 2014 Oct; 6(19):17268-76. PubMed ID: 25216036 [TBL] [Abstract][Full Text] [Related]
11. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Feng L; Li K; Shi X; Gao M; Liu J; Liu Z Adv Healthc Mater; 2014 Aug; 3(8):1261-71. PubMed ID: 24652715 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. Li JL; Hou XL; Bao HC; Sun L; Tang B; Wang JF; Wang XG; Gu M J Biomed Mater Res A; 2014 Jul; 102(7):2181-8. PubMed ID: 23852749 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Biological Secretions Binding to Graphene Oxide in Water and the Specific Toxicological Mechanisms. Mu L; Gao Y; Hu X Environ Sci Technol; 2016 Aug; 50(16):8530-7. PubMed ID: 27419256 [TBL] [Abstract][Full Text] [Related]
14. Ternary Interactions and Energy Transfer between Fluorescein Isothiocyanate, Adenosine Triphosphate, and Graphene Oxide Nanocarriers. Ratajczak K; Stobiecka M J Phys Chem B; 2017 Jul; 121(28):6822-6830. PubMed ID: 28650635 [TBL] [Abstract][Full Text] [Related]
15. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Chen J; Liu H; Zhao C; Qin G; Xi G; Li T; Wang X; Chen T Biomaterials; 2014 Jun; 35(18):4986-95. PubMed ID: 24656608 [TBL] [Abstract][Full Text] [Related]
16. Graphene-encapsulated iron microspheres on the graphene nanosheets. Guo P; Zhu G; Song H; Chen X; Zhang S Phys Chem Chem Phys; 2011 Oct; 13(39):17818-24. PubMed ID: 21909510 [TBL] [Abstract][Full Text] [Related]
17. A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent. Cho Y; Kim H; Choi Y Chem Commun (Camb); 2013 Feb; 49(12):1202-4. PubMed ID: 23283113 [TBL] [Abstract][Full Text] [Related]
18. Neutron-Activatable Nanoparticles for Intraperitoneal Radiation Therapy. Hargrove D; Lu X Methods Mol Biol; 2017; 1530():379-389. PubMed ID: 28150216 [TBL] [Abstract][Full Text] [Related]
19. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer. Munaweera I; Levesque-Bishop D; Shi Y; Di Pasqua AJ; Balkus KJ ACS Appl Mater Interfaces; 2014 Dec; 6(24):22250-6. PubMed ID: 25396281 [TBL] [Abstract][Full Text] [Related]
20. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]