BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28625045)

  • 1. Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.
    Tong S; Quinto CA; Zhang L; Mohindra P; Bao G
    ACS Nano; 2017 Jul; 11(7):6808-6816. PubMed ID: 28625045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent magnetic and inductive heating properties of Fe
    Mohapatra J; Zeng F; Elkins K; Xing M; Ghimire M; Yoon S; Mishra SR; Liu JP
    Phys Chem Chem Phys; 2018 May; 20(18):12879-12887. PubMed ID: 29700525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural perspective on revealing heat dissipation behavior of CoFe
    Shams SF; Ghazanfari MR; Pettinger S; Tavabi AH; Siemensmeyer K; Smekhova A; Dunin-Borkowski RE; Westmeyer GG; Schmitz-Antoniak C
    Phys Chem Chem Phys; 2020 Dec; 22(46):26728-26741. PubMed ID: 33078790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging.
    Shen Z; Wu A; Chen X
    Mol Pharm; 2017 May; 14(5):1352-1364. PubMed ID: 27776215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Iron Oxide Nanoparticles for Biomedical Applications.
    Jiang K; Zhang L; Bao G
    Curr Opin Biomed Eng; 2021 Dec; 20():. PubMed ID: 35211662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy.
    Motoyama J; Hakata T; Kato R; Yamashita N; Morino T; Kobayashi T; Honda H
    Biomagn Res Technol; 2008 Oct; 6():4. PubMed ID: 18928573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maghemite (γ-Fe
    Lemine OM; Madkhali N; Alshammari M; Algessair S; Gismelseed A; El Mir L; Hjiri M; Yousif AA; El-Boubbou K
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.
    Shi D; Sadat ME; Dunn AW; Mast DB
    Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.
    Suriyanto ; Ng EY; Kumar SD
    Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.
    Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS
    J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields.
    Yang CT; Korangath P; Stewart J; Hu C; Fu W; Grüttner C; Beck SE; Lin FH; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):59-75. PubMed ID: 33426997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.
    Ruggiero MR; Crich SG; Sieni E; Sgarbossa P; Forzan M; Cavallari E; Stefania R; Dughiero F; Aime S
    Nanotechnology; 2016 Jul; 27(28):285104. PubMed ID: 27265726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetically Induced Brownian Motion of Iron Oxide Nanocages in Alternating Magnetic Fields and Their Application for Efficient siRNA Delivery.
    Kang MA; Fang J; Paragodaarachchi A; Kodama K; Yakobashvili D; Ichiyanagi Y; Matsui H
    Nano Lett; 2022 Nov; 22(22):8852-8859. PubMed ID: 36346801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly water-soluble magnetic iron oxide (Fe
    Majeed MI; Lu Q; Yan W; Li Z; Hussain I; Tahir MN; Tremel W; Tan B
    J Mater Chem B; 2013 Jun; 1(22):2874-2884. PubMed ID: 32260874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Application in Liver Cancer Treatment.
    Kandasamy G; Sudame A; Luthra T; Saini K; Maity D
    ACS Omega; 2018 Apr; 3(4):3991-4005. PubMed ID: 30023884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry).
    Garaio E; Sandre O; Collantes JM; Garcia JA; Mornet S; Plazaola F
    Nanotechnology; 2015 Jan; 26(1):015704. PubMed ID: 25490677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity.
    Giustini AJ; Gottesman RE; Petryk AA; Rauwerdink AM; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24382988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles.
    Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F
    J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.
    Xu H; Pan Y
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.