These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28625485)

  • 21. Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex.
    Chase SM; Kass RE; Schwartz AB
    J Neurophysiol; 2012 Jul; 108(2):624-44. PubMed ID: 22496532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey.
    Crutcher MD; Russo GS; Ye S; Backus DA
    Exp Brain Res; 2004 Oct; 158(3):278-88. PubMed ID: 15365665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use.
    Hu K; Jamali M; Moses ZB; Ortega CA; Friedman GN; Xu W; Williams ZM
    Sci Rep; 2018 Jul; 8(1):10583. PubMed ID: 30002452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Timing and communication of parietal cortex for visuomotor control.
    Battaglia-Mayer A; Ferrari-Toniolo S; Visco-Comandini F
    Curr Opin Neurobiol; 2015 Aug; 33():103-9. PubMed ID: 25841091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():71-5. PubMed ID: 26736203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociating visual and motor directional selectivity using visuomotor adaptation.
    Haar S; Donchin O; Dinstein I
    J Neurosci; 2015 Apr; 35(17):6813-21. PubMed ID: 25926457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical representation of ipsilateral arm movements in monkey and man.
    Ganguly K; Secundo L; Ranade G; Orsborn A; Chang EF; Dimitrov DF; Wallis JD; Barbaro NM; Knight RT; Carmena JM
    J Neurosci; 2009 Oct; 29(41):12948-56. PubMed ID: 19828809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid acquisition of novel interface control by small ensembles of arbitrarily selected primary motor cortex neurons.
    Law AJ; Rivlis G; Schieber MH
    J Neurophysiol; 2014 Sep; 112(6):1528-48. PubMed ID: 24920030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effector-Invariant Movement Encoding in the Human Motor System.
    Haar S; Dinstein I; Shelef I; Donchin O
    J Neurosci; 2017 Sep; 37(37):9054-9063. PubMed ID: 28821649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.
    Prsa M; GaliƱanes GL; Huber D
    Neuron; 2017 Feb; 93(4):929-939.e6. PubMed ID: 28231470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements.
    Sun H; Blakely TM; Darvas F; Wander JD; Johnson LA; Su DK; Miller KJ; Fetz EE; Ojemann JG
    Clin Neurophysiol; 2015 Nov; 126(11):2150-61. PubMed ID: 25680948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions.
    Leinweber M; Ward DR; Sobczak JM; Attinger A; Keller GB
    Neuron; 2017 Sep; 95(6):1420-1432.e5. PubMed ID: 28910624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Latent inputs improve estimates of neural encoding in motor cortex.
    Chase SM; Schwartz AB; Kass RE
    J Neurosci; 2010 Oct; 30(41):13873-82. PubMed ID: 20943928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.
    Shanechi MM; Williams ZM; Wornell GW; Hu RC; Powers M; Brown EN
    PLoS One; 2013; 8(4):e59049. PubMed ID: 23593130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bidirectional brain-computer interfaces.
    Hughes C; Herrera A; Gaunt R; Collinger J
    Handb Clin Neurol; 2020; 168():163-181. PubMed ID: 32164851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.
    Xu Z; So RQ; Toe KK; Ang KK; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3049-52. PubMed ID: 25570634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.