BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28625661)

  • 21. Hyperoxia and moderate hypoxia fail to affect inspiratory muscle fatigue in humans.
    Ameredes BT; Clanton TL
    J Appl Physiol (1985); 1989 Feb; 66(2):894-900. PubMed ID: 2708219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemoreflex and metaboreflex responses to static hypoxic exercise in aging humans.
    Houssiere A; Najem B; Pathak A; Xhaët O; Naeije R; Van De Borne P
    Med Sci Sports Exerc; 2006 Feb; 38(2):305-12. PubMed ID: 16531899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of exercise-induced spinal loop properties in response to oxygen availability.
    Rupp T; Racinais S; Bringard A; Lapole T; Perrey S
    Eur J Appl Physiol; 2015 Mar; 115(3):471-82. PubMed ID: 25361617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of exercise in normobaric hypoxia on hemodynamics during muscle metaboreflex activation in normoxia.
    Mulliri G; Sainas G; Magnani S; Roberto S; Ghiani G; Mannoni M; Pinna V; Willis SJ; Millet GP; Doneddu A; Crisafulli A
    Eur J Appl Physiol; 2019 May; 119(5):1137-1148. PubMed ID: 30783735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise.
    Peltonen JE; Paterson DH; Shoemaker JK; Delorey DS; Dumanoir GR; Petrella RJ; Kowalchuk JM
    Respir Physiol Neurobiol; 2009 Oct; 169(1):24-35. PubMed ID: 19729079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aspects of respiratory muscle fatigue in a mountain ultramarathon race.
    Wüthrich TU; Marty J; Kerherve H; Millet GY; Verges S; Spengler CM
    Med Sci Sports Exerc; 2015 Mar; 47(3):519-27. PubMed ID: 25033264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intercostal and forearm muscle deoxygenation during respiratory fatigue in patients with heart failure: potential role of a respiratory muscle metaboreflex.
    Moreno AM; Castro RR; Silva BM; Villacorta H; Sant'Anna Junior M; Nóbrega AC
    Braz J Med Biol Res; 2014 Nov; 47(11):972-6. PubMed ID: 25296359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of different oxygen contents in inhaled mixture on development of muscle fatigue in the human inspiratory muscles].
    Segizbaeva MO; Aleksandrova NP
    Ross Fiziol Zh Im I M Sechenova; 2009 Jun; 95(6):629-38. PubMed ID: 19639887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle endurance and mitochondrial function after chronic normobaric hypoxia: contrast of respiratory and limb muscles.
    Gamboa JL; Andrade FH
    Pflugers Arch; 2012 Feb; 463(2):327-38. PubMed ID: 22113781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ensemble Input of Group III/IV Muscle Afferents to CNS: A Limiting Factor of Central Motor Drive During Endurance Exercise from Normoxia to Moderate Hypoxia.
    Amann M; Dempsey JA
    Adv Exp Med Biol; 2016; 903():325-42. PubMed ID: 27343106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inspiratory muscles do not limit maximal incremental exercise performance in healthy subjects.
    Romer LM; Miller JD; Haverkamp HC; Pegelow DF; Dempsey JA
    Respir Physiol Neurobiol; 2007 Jun; 156(3):353-61. PubMed ID: 17134946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction Between Ambient Temperature, Hypoxia, and Load Carriage on Respiratory Muscle Fatigue.
    Hinde K; Low C; Lloyd R; Cooke C
    Aerosp Med Hum Perform; 2018 Nov; 89(11):952-960. PubMed ID: 30352647
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of acute hypoxia on inspiratory muscle oxygenation during incremental inspiratory loading in healthy adults.
    Basoudan N; Shadgan B; Guenette JA; Road J; Reid WD
    Eur J Appl Physiol; 2016 Apr; 116(4):841-50. PubMed ID: 26892509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake.
    Messonnier L; Geyssant A; Hintzy F; Lacour JR
    Eur J Appl Physiol; 2004 Aug; 92(4-5):470-6. PubMed ID: 15138836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans.
    Babcock MA; Johnson BD; Pegelow DF; Suman OE; Griffin D; Dempsey JA
    J Appl Physiol (1985); 1995 Jan; 78(1):82-92. PubMed ID: 7713848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of inspiratory muscle work history and specific inspiratory muscle training upon human limb muscle fatigue.
    McConnell AK; Lomax M
    J Physiol; 2006 Nov; 577(Pt 1):445-57. PubMed ID: 16973699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of peripheral skeletal muscle microperfusion in a porcine model of peripheral arterial stenosis by steady-state contrast-enhanced ultrasound and Doppler flow measurement.
    Naehle CP; Steinberg VA; Schild H; Mommertz G
    J Vasc Surg; 2015 May; 61(5):1312-20. PubMed ID: 24418637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time contrast-enhanced ultrasound for the assessment of perfusion dynamics in skeletal muscle.
    Krix M; Krakowski-Roosen H; Kauczor HU; Delorme S; Weber MA
    Ultrasound Med Biol; 2009 Oct; 35(10):1587-95. PubMed ID: 19682788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inspiratory and expiratory muscle perfusion in maximally exercised ponies.
    Manohar M
    J Appl Physiol (1985); 1990 Feb; 68(2):544-8. PubMed ID: 2318766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiratory muscle work compromises leg blood flow during maximal exercise.
    Harms CA; Babcock MA; McClaran SR; Pegelow DF; Nickele GA; Nelson WB; Dempsey JA
    J Appl Physiol (1985); 1997 May; 82(5):1573-83. PubMed ID: 9134907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.