These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 28625678)
1. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. Poulain A; Perret S; Malenfant F; Mullick A; Massie B; Durocher Y J Biotechnol; 2017 Aug; 255():16-27. PubMed ID: 28625678 [TBL] [Abstract][Full Text] [Related]
2. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Poulain A; Mullick A; Massie B; Durocher Y J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656 [TBL] [Abstract][Full Text] [Related]
3. High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Gaillet B; Gilbert R; Broussau S; Pilotte A; Malenfant F; Mullick A; Garnier A; Massie B Biotechnol Bioeng; 2010 Jun; 106(2):203-15. PubMed ID: 20178120 [TBL] [Abstract][Full Text] [Related]
4. High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch. Gaillet B; Gilbert R; Amziani R; Guilbault C; Gadoury C; Caron AW; Mullick A; Garnier A; Massie B Biotechnol Prog; 2007; 23(1):200-9. PubMed ID: 17269689 [TBL] [Abstract][Full Text] [Related]
5. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266 [TBL] [Abstract][Full Text] [Related]
6. Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools. Balasubramanian S; Matasci M; Kadlecova Z; Baldi L; Hacker DL; Wurm FM J Biotechnol; 2015 Apr; 200():61-9. PubMed ID: 25758242 [TBL] [Abstract][Full Text] [Related]
7. Repressing expression of difficult-to-express recombinant proteins during the selection process increases productivity of CHO stable pools. Maltais JS; Lord-Dufour S; Morasse A; Stuible M; Loignon M; Durocher Y Biotechnol Bioeng; 2023 Oct; 120(10):2840-2852. PubMed ID: 37232536 [TBL] [Abstract][Full Text] [Related]
8. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369 [TBL] [Abstract][Full Text] [Related]
9. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
10. Multivariate data analysis of process parameters affecting the growth and productivity of stable Chinese hamster ovary cell pools expressing SARS-CoV-2 spike protein as vaccine antigen in early process development. Reyes SJ; Lemire L; Molina RS; Roy M; L'Ecuyer-Coelho H; Martynova Y; Cass B; Voyer R; Durocher Y; Henry O; Pham PL Biotechnol Prog; 2024; 40(5):e3467. PubMed ID: 38660973 [TBL] [Abstract][Full Text] [Related]
11. Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Balasubramanian S; Rajendra Y; Baldi L; Hacker DL; Wurm FM Biotechnol Bioeng; 2016 Jun; 113(6):1234-43. PubMed ID: 26616356 [TBL] [Abstract][Full Text] [Related]
12. A simple high-yielding process for transient gene expression in CHO cells. Rajendra Y; Kiseljak D; Baldi L; Hacker DL; Wurm FM J Biotechnol; 2011 Apr; 153(1-2):22-6. PubMed ID: 21392548 [TBL] [Abstract][Full Text] [Related]
13. Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools. Rajendra Y; Balasubramanian S; Peery RB; Swartling JR; McCracken NA; Norris DL; Frye CC; Barnard GC Biotechnol Prog; 2017 Mar; 33(2):534-540. PubMed ID: 28188692 [TBL] [Abstract][Full Text] [Related]
14. Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Wulhfard S; Tissot S; Bouchet S; Cevey J; De Jesus M; Hacker DL; Wurm FM Biotechnol Prog; 2008; 24(2):458-65. PubMed ID: 18220408 [TBL] [Abstract][Full Text] [Related]
15. Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Kunaparaju R; Liao M; Sunstrom NA Biotechnol Bioeng; 2005 Sep; 91(6):670-7. PubMed ID: 15948170 [TBL] [Abstract][Full Text] [Related]
16. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. Chin CL; Chin HK; Chin CS; Lai ET; Ng SK BMC Biotechnol; 2015 Jun; 15():44. PubMed ID: 26033090 [TBL] [Abstract][Full Text] [Related]
17. Virus-free transient protein production in Sf9 cells. Shen X; Hacker DL; Baldi L; Wurm FM J Biotechnol; 2014 Feb; 171():61-70. PubMed ID: 24333123 [TBL] [Abstract][Full Text] [Related]
18. High-level production of wild-type and oxidation-resistant recombinant alpha-1-antitrypsin in glycoengineered CHO cells. Koyuturk I; Kedia S; Robotham A; Star A; Brochu D; Sauvageau J; Kelly J; Gilbert M; Durocher Y Biotechnol Bioeng; 2022 Sep; 119(9):2331-2344. PubMed ID: 35508753 [TBL] [Abstract][Full Text] [Related]
19. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114 [TBL] [Abstract][Full Text] [Related]
20. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene. Running Deer J; Allison DS Biotechnol Prog; 2004; 20(3):880-9. PubMed ID: 15176895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]