These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 28625715)

  • 1. Discovery of simplified leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors.
    Yoon S; Kim JH; Koh Y; Tran PT; Ann J; Yoon I; Jang J; Kim WK; Lee S; Lee J; Kim S; Lee J
    Bioorg Med Chem; 2017 Aug; 25(15):4145-4152. PubMed ID: 28625715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of novel leucyladenylate sulfamate surrogates as leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors.
    Yoon S; Zuo D; Kim JH; Yoon I; Ann J; Kim SE; Cho D; Kim WK; Lee S; Lee J; Kim S; Lee J
    Bioorg Med Chem; 2018 Aug; 26(14):4073-4079. PubMed ID: 30041947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationship of leucyladenylate sulfamate analogues as leucyl-tRNA synthetase (LRS)-targeting inhibitors of Mammalian target of rapamycin complex 1 (mTORC1).
    Yoon S; Kim SE; Kim JH; Yoon I; Tran PT; Ann J; Kim C; Byun WS; Lee S; Kim S; Lee J; Lee J
    Bioorg Med Chem; 2019 Mar; 27(6):1099-1109. PubMed ID: 30755350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors.
    Yoon S; Kim JH; Kim SE; Kim C; Tran PT; Ann J; Koh Y; Jang J; Kim S; Moon HS; Kim WK; Lee S; Lee J; Kim S; Lee J
    J Med Chem; 2016 Nov; 59(22):10322-10328. PubMed ID: 27933890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of (S)-4-isobutyloxazolidin-2-one as a novel leucyl-tRNA synthetase (LRS)-targeted mTORC1 inhibitor.
    Yoon S; Kim JH; Yoon I; Kim C; Kim SE; Koh Y; Jeong SJ; Lee J; Kim S; Lee J
    Bioorg Med Chem Lett; 2016 Jul; 26(13):3038-3041. PubMed ID: 27209231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction.
    Kim JH; Lee C; Lee M; Wang H; Kim K; Park SJ; Yoon I; Jang J; Zhao H; Kim HK; Kwon NH; Jeong SJ; Yoo HC; Kim JH; Yang JS; Lee MY; Lee CW; Yun J; Oh SJ; Kang JS; Martinis SA; Hwang KY; Guo M; Han G; Han JM; Kim S
    Nat Commun; 2017 Sep; 8(1):732. PubMed ID: 28963468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leucine-induced localization of Leucyl-tRNA synthetase in lysosome membrane.
    Choi H; Son JB; Kang J; Kwon J; Kim JH; Jung M; Kim SK; Kim S; Mun JY
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1129-1135. PubMed ID: 28882589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based modification of pyrazolone derivatives to inhibit mTORC1 by targeting the leucyl-tRNA synthetase-RagD interaction.
    Kim JH; Jung K; Lee C; Song D; Kim K; Yoo HC; Park SJ; Kang JS; Lee KR; Kim S; Han JM; Han G
    Bioorg Chem; 2021 Jul; 112():104907. PubMed ID: 33979735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling.
    Yoon MS; Son K; Arauz E; Han JM; Kim S; Chen J
    Cell Rep; 2016 Aug; 16(6):1510-1517. PubMed ID: 27477288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway.
    Han JM; Jeong SJ; Park MC; Kim G; Kwon NH; Kim HK; Ha SH; Ryu SH; Kim S
    Cell; 2012 Apr; 149(2):410-24. PubMed ID: 22424946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.
    Lee M; Kim JH; Yoon I; Lee C; Fallahi Sichani M; Kang JS; Kang J; Guo M; Lee KY; Han G; Kim S; Han JM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5279-E5288. PubMed ID: 29784813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nontranslational function of leucyl-tRNA synthetase regulates myogenic differentiation and skeletal muscle regeneration.
    Son K; You JS; Yoon MS; Dai C; Kim JH; Khanna N; Banerjee A; Martinis SA; Han G; Han JM; Kim S; Chen J
    J Clin Invest; 2019 Apr; 129(5):2088-2093. PubMed ID: 30985292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase.
    D'Hulst G; Soro-Arnaiz I; Masschelein E; Veys K; Fitzgerald G; Smeuninx B; Kim S; Deldicque L; Blaauw B; Carmeliet P; Breen L; Koivunen P; Zhao SM; De Bock K
    Nat Commun; 2020 Jan; 11(1):174. PubMed ID: 31924757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic effects of the novel Leucyl-tRNA synthetase inhibitor BC-LI-0186 in non-small cell lung cancer.
    Kim EY; Lee JG; Lee JM; Kim A; Yoo HC; Kim K; Lee M; Lee C; Han G; Han JM; Chang YS
    Ther Adv Med Oncol; 2019; 11():1758835919846798. PubMed ID: 31205503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for mTORC1 activation.
    Kim S; Yoon I; Son J; Park J; Kim K; Lee JH; Park SY; Kang BS; Han JM; Hwang KY; Kim S
    Cell Rep; 2021 Apr; 35(4):109031. PubMed ID: 33910001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucyl-tRNA synthetase: double duty in amino acid sensing.
    DurĂ¡n RV; Hall MN
    Cell Res; 2012 Aug; 22(8):1207-9. PubMed ID: 22525334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine.
    Kim K; Yoo HC; Kim BG; Kim S; Sung Y; Yoon I; Yu YC; Park SJ; Kim JH; Myung K; Hwang KY; Kim S; Han JM
    Nat Commun; 2022 May; 13(1):2904. PubMed ID: 35614056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leucyl-tRNA synthetase 1 is required for proliferation of TSC-null cells.
    Bae JH; Kim JH
    Biochem Biophys Res Commun; 2021 Sep; 571():159-166. PubMed ID: 34325132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition.
    Ito H; Ichiyanagi O; Naito S; Bilim VN; Tomita Y; Kato T; Nagaoka A; Tsuchiya N
    BMC Cancer; 2016 Jul; 16():393. PubMed ID: 27387559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1.
    Yoon I; Nam M; Kim HK; Moon HS; Kim S; Jang J; Song JA; Jeong SJ; Kim SB; Cho S; Kim Y; Lee J; Yang WS; Yoo HC; Kim K; Kim MS; Yang A; Cho K; Park HS; Hwang GS; Hwang KY; Han JM; Kim JH; Kim S
    Science; 2020 Jan; 367(6474):205-210. PubMed ID: 31780625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.