BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28625766)

  • 1. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.
    Ouedraogo D; Ball J; Iyer A; Reis RAG; Vodovoz M; Gadda G
    Arch Biochem Biophys; 2017 Oct; 632():192-201. PubMed ID: 28625766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in Pseudomonas aeruginosa d-Arginine Dehydrogenase.
    Ouedraogo D; Souffrant M; Vasquez S; Hamelberg D; Gadda G
    Biochemistry; 2017 May; 56(19):2477-2487. PubMed ID: 28445031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase.
    Iyer A; Reis RAG; Agniswamy J; Weber IT; Gadda G
    Arch Biochem Biophys; 2022 Jan; 715():109100. PubMed ID: 34864048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.
    Gannavaram S; Sirin S; Sherman W; Gadda G
    Biochemistry; 2014 Oct; 53(41):6574-83. PubMed ID: 25243743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state kinetic mechanism and reductive half-reaction of D-arginine dehydrogenase from Pseudomonas aeruginosa.
    Yuan H; Fu G; Brooks PT; Weber I; Gadda G
    Biochemistry; 2010 Nov; 49(44):9542-50. PubMed ID: 20932054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by D-arginine dehydrogenase.
    Ball J; Bui QV; Gannavaram S; Gadda G
    Arch Biochem Biophys; 2015 Feb; 568():56-63. PubMed ID: 25637657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Insights on the Hydride and Proton Transfer Mechanisms of D-Arginine Dehydrogenase.
    Yildiz I
    Chemphyschem; 2023 Oct; 24(20):e202300431. PubMed ID: 37540527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes and substrate recognition in Pseudomonas aeruginosa D-arginine dehydrogenase.
    Fu G; Yuan H; Li C; Lu CD; Gadda G; Weber IT
    Biochemistry; 2010 Oct; 49(39):8535-45. PubMed ID: 20809650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from
    Quaye JA; Gadda G
    Biochemistry; 2020 Dec; 59(51):4833-4844. PubMed ID: 33301690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis.
    Settembre EC; Dorrestein PC; Park JH; Augustine AM; Begley TP; Ealick SE
    Biochemistry; 2003 Mar; 42(10):2971-81. PubMed ID: 12627963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects.
    Chow C; Hegde S; Blanchard JS
    Biochemistry; 2017 Aug; 56(31):4044-4052. PubMed ID: 28700220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d-Arginine Dehydrogenase.
    Ouedraogo D; Souffrant M; Yao XQ; Hamelberg D; Gadda G
    Biochemistry; 2023 Mar; 62(5):1070-1081. PubMed ID: 36795942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery, characterization, and kinetic analysis of an alditol oxidase from Streptomyces coelicolor.
    Heuts DP; van Hellemond EW; Janssen DB; Fraaije MW
    J Biol Chem; 2007 Jul; 282(28):20283-91. PubMed ID: 17517896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate Channel Flexibility in Pseudomonas aeruginosa MurB Accommodates Two Distinct Substrates.
    Chen MW; Lohkamp B; Schnell R; Lescar J; Schneider G
    PLoS One; 2013; 8(6):e66936. PubMed ID: 23805286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Flavoprotein l-6-Hydroxynicotine Oxidase: pH and Solvent Isotope Effects and Identification of Key Active Site Residues.
    Fitzpatrick PF; Chadegani F; Zhang S; Dougherty V
    Biochemistry; 2017 Feb; 56(6):869-875. PubMed ID: 28080034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the role of the active site residue Arg98 in the flavoprotein tryptophan 2-monooxygenase, a member of the L-amino oxidase family.
    Sobrado P; Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(47):13826-32. PubMed ID: 14636049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the dauBAR operon and characterization of D-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1.
    Li C; Yao X; Lu CD
    Microbiology (Reading); 2010 Jan; 156(Pt 1):60-71. PubMed ID: 19850617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Two VAO-Type Flavoprotein Oxidases from Myceliophthora thermophila.
    Ferrari AR; Rozeboom HJ; Vugts ASC; Koetsier MJ; Floor R; Fraaije MW
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29303991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.