These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 28625787)
41. Glycosyltransferase Activity Assay Using Colorimetric Methods. Shafiqur Rahman M; Qin W Methods Mol Biol; 2019; 1954():237-243. PubMed ID: 30864136 [TBL] [Abstract][Full Text] [Related]
42. The C-glycosyltransferase IroB from pathogenic Escherichia coli: identification of residues required for efficient catalysis. Foshag D; Campbell C; Pawelek PD Biochim Biophys Acta; 2014 Sep; 1844(9):1619-30. PubMed ID: 24960592 [TBL] [Abstract][Full Text] [Related]
43. Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. Swistowska AM; Gronert S; Wittrock S; Collisi W; Hecht HJ; Hofer B FEBS Lett; 2007 Aug; 581(21):4036-42. PubMed ID: 17678897 [TBL] [Abstract][Full Text] [Related]
44. Are the characteristics of betanidin glucosyltransferases from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferases? Vogt T; Zimmermann E; Grimm R; Meyer M; Strack D Planta; 1997; 203(3):349-61. PubMed ID: 9431682 [TBL] [Abstract][Full Text] [Related]
45. Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands. Mulichak AM; Lu W; Losey HC; Walsh CT; Garavito RM Biochemistry; 2004 May; 43(18):5170-80. PubMed ID: 15122882 [TBL] [Abstract][Full Text] [Related]
46. Trapping and characterization of the reaction intermediate in cyclodextrin glycosyltransferase by use of activated substrates and a mutant enzyme. Mosi R; He S; Uitdehaag J; Dijkstra BW; Withers SG Biochemistry; 1997 Aug; 36(32):9927-34. PubMed ID: 9245426 [TBL] [Abstract][Full Text] [Related]
47. In vivo investigation of the substrate recognition capability and activity affecting amino acid residues of glycosyltransferase FscMI in the biosynthesis of candicidin. Lei X; Kong L; Zhang C; Liu Q; Yao F; Zhang W; Deng Z; You D Mol Biosyst; 2013 Mar; 9(3):422-30. PubMed ID: 23324745 [TBL] [Abstract][Full Text] [Related]
48. Conformational Substrate Selection Contributes to the Enzymatic Catalytic Reaction Mechanism of Pin1. Vöhringer-Martinez E; Dörner C J Phys Chem B; 2016 Dec; 120(49):12444-12453. PubMed ID: 27973841 [TBL] [Abstract][Full Text] [Related]
49. Structures of a human blood group glycosyltransferase in complex with a photo-activatable UDP-Gal derivative reveal two different binding conformations. Jørgensen R; Batot G; Mannerstedt K; Imberty A; Breton C; Hindsgaul O; Royant A; Palcic MM Acta Crystallogr F Struct Biol Commun; 2014 Aug; 70(Pt 8):1015-21. PubMed ID: 25084373 [TBL] [Abstract][Full Text] [Related]
50. Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase. Leemhuis H; Wehmeier UF; Dijkhuizen L Biochemistry; 2004 Oct; 43(41):13204-13. PubMed ID: 15476414 [TBL] [Abstract][Full Text] [Related]
51. Molecular dynamics explorations of active site structure in designed and evolved enzymes. Osuna S; Jiménez-Osés G; Noey EL; Houk KN Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880 [TBL] [Abstract][Full Text] [Related]
52. Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization. Ravaud S; Robert X; Watzlawick H; Haser R; Mattes R; Aghajari N J Biol Chem; 2007 Sep; 282(38):28126-36. PubMed ID: 17597061 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of acceptor substrate analogs for the study of glycosyltransferases involved in the second step of the biosynthesis of O-antigen repeating units. Riley JG; Xu C; Brockhausen I Carbohydr Res; 2010 Mar; 345(5):586-97. PubMed ID: 20096402 [TBL] [Abstract][Full Text] [Related]
54. [Progress on molecular biology of trehalose synthase--a review]. Zhu Y; Zhang J; Xing L; Li M Wei Sheng Wu Xue Bao; 2009 Jan; 49(1):6-12. PubMed ID: 19388257 [TBL] [Abstract][Full Text] [Related]
55. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds. Härle J; Bechthold A Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988 [TBL] [Abstract][Full Text] [Related]
56. Small-molecule glucosylation by sucrose phosphorylase: structure-activity relationships for acceptor substrates revisited. Luley-Goedl C; Nidetzky B Carbohydr Res; 2010 Jul; 345(10):1492-6. PubMed ID: 20416864 [TBL] [Abstract][Full Text] [Related]
57. Lyase activity of glycogen synthase: Is an elimination/addition mechanism a possible reaction pathway for retaining glycosyltransferases? Díaz A; Díaz-Lobo M; Grados E; Guinovart JJ; Fita I; Ferrer JC IUBMB Life; 2012 Jul; 64(7):649-58. PubMed ID: 22648728 [TBL] [Abstract][Full Text] [Related]
58. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using D-glucal as donor substrate. Wildberger P; Brecker L; Nidetzky B Carbohydr Res; 2012 Jul; 356():224-32. PubMed ID: 22591555 [TBL] [Abstract][Full Text] [Related]
59. Structural, functional, and mutagenesis studies of UDP-glycosyltransferases. Malik V; Black GW Adv Protein Chem Struct Biol; 2012; 87():87-115. PubMed ID: 22607753 [TBL] [Abstract][Full Text] [Related]