BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 28626011)

  • 1. Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.
    Rothenhoefer KM; Costa VD; Bartolo R; Vicario-Feliciano R; Murray EA; Averbeck BB
    J Neurosci; 2017 Jul; 37(29):6902-6914. PubMed ID: 28626011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventral striatum's role in learning from gains and losses.
    Taswell CA; Costa VD; Murray EA; Averbeck BB
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12398-E12406. PubMed ID: 30545910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventral striatum lesions do not affect reinforcement learning with deterministic outcomes on slow time scales.
    Vicario-Feliciano R; Murray EA; Averbeck BB
    Behav Neurosci; 2017 Oct; 131(5):385-91. PubMed ID: 28805428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor System-Dependent Effects of Amygdala and Ventral Striatum Lesions on Explore-Exploit Behaviors.
    Giarrocco F; Costa VD; Basile BM; Pujara MS; Murray EA; Averbeck BB
    J Neurosci; 2024 Jan; 44(5):. PubMed ID: 38296647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore-Exploit Tradeoffs.
    Costa VD; Averbeck BB
    J Neurosci; 2020 Mar; 40(12):2553-2561. PubMed ID: 32060169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Amygdala Lesions on Object-Based Versus Action-Based Learning in Macaques.
    Taswell CA; Costa VD; Basile BM; Pujara MS; Jones B; Manem N; Murray EA; Averbeck BB
    Cereb Cortex; 2021 Jan; 31(1):529-546. PubMed ID: 32954409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The motivational role of the ventral striatum and amygdala in learning from gains and losses.
    Taswell CA; Janssen M; Murray EA; Averbeck BB
    Behav Neurosci; 2023 Aug; 137(4):268-280. PubMed ID: 37141014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior.
    Tang H; Costa VD; Bartolo R; Averbeck BB
    Cell Rep; 2022 Jan; 38(1):110198. PubMed ID: 34986350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards.
    Bowman EM; Aigner TG; Richmond BJ
    J Neurophysiol; 1996 Mar; 75(3):1061-73. PubMed ID: 8867118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of reward size and context on learning in macaque monkeys.
    Ferrucci L; Nougaret S; Brunamonti E; Genovesio A
    Behav Brain Res; 2019 Oct; 372():111983. PubMed ID: 31141723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques.
    Fiuzat EC; Rhodes SE; Murray EA
    J Neurosci; 2017 Mar; 37(9):2463-2470. PubMed ID: 28148725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motivational neural circuits underlying reinforcement learning.
    Averbeck BB; Costa VD
    Nat Neurosci; 2017 Mar; 20(4):505-512. PubMed ID: 28352111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.
    Guo R; Böhmer W; Hebart M; Chien S; Sommer T; Obermayer K; Gläscher J
    J Neurosci; 2016 Dec; 36(50):12650-12660. PubMed ID: 27974615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumental learning of traits versus rewards: dissociable neural correlates and effects on choice.
    Hackel LM; Doll BB; Amodio DM
    Nat Neurosci; 2015 Sep; 18(9):1233-5. PubMed ID: 26237363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals.
    Basanisi R; Marche K; Combrisson E; Apicella P; Brovelli A
    J Neurosci; 2023 May; 43(18):3339-3352. PubMed ID: 37015808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking.
    Kang J; Kim H; Hwang SH; Han M; Lee SH; Kim HF
    Nat Commun; 2021 Apr; 12(1):2100. PubMed ID: 33833228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Mechanisms for Processing Reward Uncertainty in the Primate Basal Forebrain.
    Ledbetter NM; Chen CD; Monosov IE
    J Neurosci; 2016 Jul; 36(30):7852-64. PubMed ID: 27466331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.