BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2862609)

  • 21. Anatomical relationships of dopaminergic and GABAergic systems with the GnRH-systems in the septo-hypothalamic area. Immunohistochemical studies.
    Jennes L; Stumpf WE; Tappaz ML
    Exp Brain Res; 1983; 50(1):91-9. PubMed ID: 6139290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systemic glutamate induces degeneration of a subpopulation of tyrosine hydroxylase-immunoreactive neurons in the rat area postrema.
    Phelix CF; Hartle DK
    Brain Res; 1990 May; 516(2):335-40. PubMed ID: 1973067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum.
    Kubota Y; Inagaki S; Kito S; Wu JY
    Brain Res; 1987 Mar; 406(1-2):147-56. PubMed ID: 2882818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are neurons of the arcuate nucleus necessary for pathfinding by GnRH fibers arising from third ventricular grafts?
    Silverman RC; Gibson MJ; Charlton HM; Silverman AJ
    Exp Neurol; 1990 Aug; 109(2):204-13. PubMed ID: 1696208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate (MSG).
    Pilcher WH; Joseph SA
    Peptides; 1986; 7(5):783-9. PubMed ID: 2879278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide- and transmitter-containing neurons in the mediobasal hypothalamus and their relation to GABAergic systems: possible roles in control of prolactin and growth hormone secretion.
    Meister B; Hökfelt T
    Synapse; 1988; 2(6):585-605. PubMed ID: 2905536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential alterations in opioid analgesia following neonatal monosodium glutamate treatment.
    Bodnar RJ; Portzline T; Nilaver G
    Brain Res Bull; 1985 Sep; 15(3):299-305. PubMed ID: 2932202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuberohypophyseal and tuberoinfundibular dopamine systems exhibit differential sensitivity to neonatal monosodium glutamate treatment.
    Dawson R; Valdes JJ; Annau Z
    Pharmacology; 1985; 31(1):17-23. PubMed ID: 2862648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis.
    Ershov PV; Ugrumov MV; Calas A; Makarenko IG; Krieger M; Thibault J
    J Chem Neuroanat; 2002 Jul; 24(2):95-107. PubMed ID: 12191726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monosodium glutamate induced lesions of the arcuate nucleus. I. Endocrine deficiency and ultrastructure of the median eminence.
    Holzwarth-McBride MA; Hurst EM; Knigge KM
    Anat Rec; 1976 Oct; 186(2):185-205. PubMed ID: 984473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of insulin-receptive nerve terminals in rat median eminence.
    van Houten M; Nance DM; Gauthier S; Posner BI
    Endocrinology; 1983 Oct; 113(4):1393-9. PubMed ID: 6617575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct evidence that the arcuate nucleus-median eminence tuberoinfundibular system is not of primary importance in the feedback regulation of luteinizing hormone and follicle-stimulating hormone secretion in the castrated rat.
    Greeley GH; Nicholson GF; Nemeroff CB; Youngblood WW; Kizer JS
    Endocrinology; 1978 Jul; 103(1):170-5. PubMed ID: 744070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopaminergic regulation of luteinizing hormone-releasing hormone release at the median eminence level: immunocytochemical and physiological evidence in hens.
    Contijoch AM; Gonzalez C; Singh HN; Malamed S; Troncoso S; Advis JP
    Neuroendocrinology; 1992 Mar; 55(3):290-300. PubMed ID: 1354335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of parenteral glutamate treatment on the localization of neurotransmitters in the mediobasal hypothalamus.
    Walaas I; Fonnum F
    Brain Res; 1978 Sep; 153(3):549-62. PubMed ID: 29695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GABA-labeled terminals form proportionally more synapses with dopaminergic neurons containing low densities of tyrosine hydroxylase-immunoreactivity in rat ventral tegmental area.
    Bayer VE; Pickel VM
    Brain Res; 1991 Sep; 559(1):44-55. PubMed ID: 1685938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of galanin-like immunoreactivity in the rat brain: effects of neonatal glutamate treatment.
    Gabriel SM; MacGarvey UM; Koenig JI; Swartz KJ; Martin JB; Beal MF
    Neurosci Lett; 1988 Apr; 87(1-2):114-21. PubMed ID: 2454423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool.
    Nemeroff CB; Lipton MA; Kizer JS
    Dev Neurosci; 1978; 1(2):102-9. PubMed ID: 39735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for protein kinase-C mediation of the neurotensin-induced activation of tyrosine hydroxylase in tuberoinfundibular dopaminergic neurons.
    Berry SA; Gudelsky GA
    Endocrinology; 1992 Sep; 131(3):1207-11. PubMed ID: 1354601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased responsiveness of the hypothalamic-pituitary axis after neurotoxin-induced hypothalamic denervation.
    Spinedi E; Johnston C; Negro-Vilar A
    Endocrinology; 1984 Jul; 115(1):267-72. PubMed ID: 6145582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The neuronal cell types in the arcuate nucleus in normal and monosodium glutamate treated rats: a Golgi study.
    Schiethart L; Marani E; Rietveld WJ; Van Ingen J
    Acta Morphol Neerl Scand; 1983 Dec; 21(4):285-91. PubMed ID: 6670595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.