BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28626142)

  • 1. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.
    Tanaka M; Kurosawa S
    J Oleo Sci; 2017 Jul; 66(7):699-704. PubMed ID: 28626142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption.
    Sibarani J; Takai M; Ishihara K
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):88-93. PubMed ID: 17112710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.
    Goda T; Konno T; Takai M; Moro T; Ishihara K
    Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers.
    Nakano H; Kakinoki S; Iwasaki Y
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111900. PubMed ID: 34102530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of polycarbonate surfaces by grafting PEG and zwitterionic polymers with a multicomb structure.
    Yang J; Lv J; Behl M; Lendlein A; Yang D; Zhang L; Shi C; Guo J; Feng Y
    Macromol Biosci; 2013 Dec; 13(12):1681-8. PubMed ID: 24106003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally friendly surface modification of PDMS using PEG polymer brush.
    Zhang Z; Feng X; Luo Q; Liu BF
    Electrophoresis; 2009 Sep; 30(18):3174-80. PubMed ID: 19722209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.
    Zilio C; Sola L; Damin F; Faggioni L; Chiari M
    Biomed Microdevices; 2014 Feb; 16(1):107-14. PubMed ID: 24037663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.
    Zhang H; Bian C; Jackson JK; Khademolhosseini F; Burt HM; Chiao M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9126-33. PubMed ID: 24853631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers.
    Seo JH; Matsuno R; Konno T; Takai M; Ishihara K
    Biomaterials; 2008 Apr; 29(10):1367-76. PubMed ID: 18155763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple surface treatment using amphiphilic phospholipid polymers to obtain wetting and lubricity on polydimethylsiloxane-based substrates.
    Fukazawa K; Ishihara K
    Colloids Surf B Biointerfaces; 2012 Sep; 97():70-6. PubMed ID: 22609584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.
    van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E
    Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications.
    Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.
    Nguyen TP; Tran BM; Lee NY
    Lab Chip; 2016 Aug; 16(17):3251-9. PubMed ID: 27412355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption.
    Wu D; Zhao B; Dai Z; Qin J; Lin B
    Lab Chip; 2006 Jul; 6(7):942-7. PubMed ID: 16804600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching water droplet adhesion using responsive polymer brushes.
    Liu X; Ye Q; Yu B; Liang Y; Liu W; Zhou F
    Langmuir; 2010 Jul; 26(14):12377-82. PubMed ID: 20557059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zeta potentials of PDMS surfaces modified with poly(ethylene glycol) by physisorption.
    Song Y; Feng A; Liu Z; Li D
    Electrophoresis; 2020 Jun; 41(10-11):761-768. PubMed ID: 31475365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials.
    Lin X; Fukazawa K; Ishihara K
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17489-98. PubMed ID: 26202385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials.
    Liu L; Sheardown H
    Biomaterials; 2005 Jan; 26(3):233-44. PubMed ID: 15262466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.
    Sugiura S; Edahiro J; Sumaru K; Kanamori T
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):301-5. PubMed ID: 18242961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer.
    Keefe AJ; Brault ND; Jiang S
    Biomacromolecules; 2012 May; 13(5):1683-7. PubMed ID: 22512660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.