BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28626421)

  • 1. Divergent Metabolic Regulation of Autophagy and mTORC1-Early Events in Alzheimer's Disease?
    Shafei MA; Harris M; Conway ME
    Front Aging Neurosci; 2017; 9():173. PubMed ID: 28626421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mTORC2 (Rictor) in Alzheimer's Disease and Reversal of Amyloid-β Expression-Induced Insulin Resistance and Toxicity in Rat Primary Cortical Neurons.
    Lee HK; Kwon B; Lemere CA; de la Monte S; Itamura K; Ha AY; Querfurth HW
    J Alzheimers Dis; 2017; 56(3):1015-1036. PubMed ID: 28035937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer's disease.
    Harris M; El Hindy M; Usmari-Moraes M; Hudd F; Shafei M; Dong M; Hezwani M; Clark P; House M; Forshaw T; Kehoe P; Conway ME
    Free Radic Biol Med; 2020 May; 152():755-766. PubMed ID: 31982508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis.
    Uddin MS; Mamun AA; Labu ZK; Hidalgo-Lanussa O; Barreto GE; Ashraf GM
    J Cell Physiol; 2019 Jun; 234(6):8094-8112. PubMed ID: 30362531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
    Chen Z; Zhong C
    Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Autophagy as a Therapeutic Target for Alzheimer's Disease.
    Steele JW; Fan E; Kelahmetoglu Y; Tian Y; Bustos V
    Postdoc J; 2013 Feb; 1(2):21-34. PubMed ID: 28286801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium-enriched yeast inhibited β-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer's disease.
    Song GL; Chen C; Wu QY; Zhang ZH; Zheng R; Chen Y; Jia SZ; Ni JZ
    Metallomics; 2018 Aug; 10(8):1107-1115. PubMed ID: 30043821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of mTOR: a culprit of Alzheimer's disease?
    Cai Z; Chen G; He W; Xiao M; Yan LJ
    Neuropsychiatr Dis Treat; 2015; 11():1015-30. PubMed ID: 25914534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease.
    Reddy PH; Oliver DM
    Cells; 2019 May; 8(5):. PubMed ID: 31121890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Autophagy for the Treatment of Alzheimer's Disease: Challenges and Opportunities.
    Liu J; Li L
    Front Mol Neurosci; 2019; 12():203. PubMed ID: 31507373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome.
    Salminen A; Kaarniranta K; Kauppinen A; Ojala J; Haapasalo A; Soininen H; Hiltunen M
    Prog Neurobiol; 2013; 106-107():33-54. PubMed ID: 23827971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenomethionine Mitigates Cognitive Decline by Targeting Both Tau Hyperphosphorylation and Autophagic Clearance in an Alzheimer's Disease Mouse Model.
    Zhang ZH; Wu QY; Zheng R; Chen C; Chen Y; Liu Q; Hoffmann PR; Ni JZ; Song GL
    J Neurosci; 2017 Mar; 37(9):2449-2462. PubMed ID: 28137967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease.
    Friedman LG; Qureshi YH; Yu WH
    Neurotherapeutics; 2015 Jan; 12(1):94-108. PubMed ID: 25421002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapamycin, Autophagy, and Alzheimer's Disease.
    Cai Z; Yan LJ
    J Biochem Pharmacol Res; 2013 Jun; 1(2):84-90. PubMed ID: 23826514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics.
    Di Domenico F; Barone E; Perluigi M; Butterfield DA
    Antioxid Redox Signal; 2017 Mar; 26(8):364-387. PubMed ID: 27626216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease.
    Liu Z; Li T; Li P; Wei N; Zhao Z; Liang H; Ji X; Chen W; Xue M; Wei J
    Oxid Med Cell Longev; 2015; 2015():352723. PubMed ID: 26171115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Implications of Autophagy in Alzheimer's Disease.
    Hamano T; Hayashi K; Shirafuji N; Nakamoto Y
    Curr Alzheimer Res; 2018; 15(14):1283-1296. PubMed ID: 30289076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BH3-only proteins Puma and Beclin1 regulate autophagic death in neurons in response to Amyloid-β.
    Saha A; Saleem S; Paidi RK; Biswas SC
    Cell Death Discov; 2021 Nov; 7(1):356. PubMed ID: 34782612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.