BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28626565)

  • 1. Site-specific azide-acetyllysine photochemistry on epigenetic readers for interactome profiling.
    Sudhamalla B; Dey D; Breski M; Nguyen T; Islam K
    Chem Sci; 2017 Jun; 8(6):4250-4256. PubMed ID: 28626565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the non-histone interactome of the BRPF1 bromodomain using site-specific azide-acetyllysine photochemistry.
    Barman S; Padhan J; Sudhamalla B
    J Biol Chem; 2024 Jan; 300(1):105551. PubMed ID: 38072045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the Domain-Specific Interactome of the TAF1 Tandem Reader Using Site-Specific Azide-Acetyllysine Photochemistry.
    Yadav Y; Barman S; Roy A; Padhan J; Sudhamalla B
    Biochemistry; 2023 Jan; 62(2):270-280. PubMed ID: 35786907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering an acetyllysine reader with a photocrosslinking amino acid for interactome profiling.
    Roy A; Barman S; Padhan J; Sudhamalla B
    Chem Commun (Camb); 2021 Sep; 57(77):9866-9869. PubMed ID: 34490864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic cavity-directed azide-acetyllysine photochemistry for profiling non-histone interacting partners of bromodomain protein 1.
    Kuwik J; Wagner S; Sudhamalla B; Debiec R; Islam K
    RSC Chem Biol; 2022 Aug; 3(8):1061-1068. PubMed ID: 35975005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological function and histone recognition of family IV bromodomain-containing proteins.
    Lloyd JT; Glass KC
    J Cell Physiol; 2018 Mar; 233(3):1877-1886. PubMed ID: 28500727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bromodomain Histone Readers and Cancer.
    Jain AK; Barton MC
    J Mol Biol; 2017 Jun; 429(13):2003-2010. PubMed ID: 27890782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery.
    Philpott M; Yang J; Tumber T; Fedorov O; Uttarkar S; Filippakopoulos P; Picaud S; Keates T; Felletar I; Ciulli A; Knapp S; Heightman TD
    Mol Biosyst; 2011 Oct; 7(10):2899-908. PubMed ID: 21804994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode.
    Wang D; Kon N; Lasso G; Jiang L; Leng W; Zhu WG; Qin J; Honig B; Gu W
    Nature; 2016 Oct; 538(7623):118-122. PubMed ID: 27626385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BET Bromodomain as a Target of Epigenetic Therapy.
    Noguchi-Yachide T
    Chem Pharm Bull (Tokyo); 2016; 64(6):540-7. PubMed ID: 27250788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Roles of Bromodomain Proteins in Cancer.
    Boyson SP; Gao C; Quinn K; Boyd J; Paculova H; Frietze S; Glass KC
    Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain.
    Gay JC; Eckenroth BE; Evans CM; Langini C; Carlson S; Lloyd JT; Caflisch A; Glass KC
    Proteins; 2019 Feb; 87(2):157-167. PubMed ID: 30520161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BRD4 Promotes Gastric Cancer Progression and Metastasis through Acetylation-Dependent Stabilization of Snail.
    Qin ZY; Wang T; Su S; Shen LT; Zhu GX; Liu Q; Zhang L; Liu KW; Zhang Y; Zhou ZH; Zhang XN; Wen LZ; Yao YL; Sun WJ; Guo Y; Liu KJ; Liu L; Wang XW; Wei YL; Wang J; Xiao HL; Liu P; Bian XW; Chen DF; Wang B
    Cancer Res; 2019 Oct; 79(19):4869-4881. PubMed ID: 31311807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Brd4 acetyllysine-binding protein is involved in activation of polyomavirus JC.
    Wollebo HS; Bellizzi A; Cossari DH; Salkind J; Safak M; White MK
    J Neurovirol; 2016 Oct; 22(5):615-625. PubMed ID: 27007123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells.
    Gonzales-Cope M; Sidoli S; Bhanu NV; Won KJ; Garcia BA
    BMC Genomics; 2016 Feb; 17():95. PubMed ID: 26847871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing diazirine-based chemical probes to identify histone modification 'readers' and 'erasers'.
    Yang T; Liu Z; Li XD
    Chem Sci; 2015 Feb; 6(2):1011-1017. PubMed ID: 29560188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a methyllysine reader with photoactive amino acid in mammalian cells.
    Arora S; Sappa S; Hinkelman K; Islam K
    Chem Commun (Camb); 2020 Oct; 56(81):12210-12213. PubMed ID: 32926023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails.
    Shen W; Xu C; Huang W; Zhang J; Carlson JE; Tu X; Wu J; Shi Y
    Biochemistry; 2007 Feb; 46(8):2100-10. PubMed ID: 17274598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered bromodomains to explore the acetylproteome.
    Bryson BD; Del Rosario AM; Gootenberg JS; Yaffe MB; White FM
    Proteomics; 2015 May; 15(9):1470-5. PubMed ID: 25641834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases.
    Morgado-Pascual JL; Rayego-Mateos S; Tejedor L; Suarez-Alvarez B; Ruiz-Ortega M
    Front Pharmacol; 2019; 10():1315. PubMed ID: 31780938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.