BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 28626667)

  • 1. Potential applications of ferulic acid from natural sources.
    Kumar N; Pruthi V
    Biotechnol Rep (Amst); 2014 Dec; 4():86-93. PubMed ID: 28626667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Review on Therapeutic Applications of Ferulic Acid and its Novel Analogues: A Brief Literature.
    Babbar R; Dhiman S; Grover R; Kaur A; Arora S
    Mini Rev Med Chem; 2021; 21(12):1578-1593. PubMed ID: 33494676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer.
    Gupta A; Singh AK; Loka M; Pandey AK; Bishayee A
    Adv Protein Chem Struct Biol; 2021; 125():215-257. PubMed ID: 33931140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochemical profiles and antioxidant activity of processed brown rice products.
    Gong ES; Luo S; Li T; Liu C; Zhang G; Chen J; Zeng Z; Liu RH
    Food Chem; 2017 Oct; 232():67-78. PubMed ID: 28490126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant potential of ferulic acid.
    Graf E
    Free Radic Biol Med; 1992 Oct; 13(4):435-48. PubMed ID: 1398220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferulic Acid: therapeutic potential through its antioxidant property.
    Srinivasan M; Sudheer AR; Menon VP
    J Clin Biochem Nutr; 2007 Mar; 40(2):92-100. PubMed ID: 18188410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus - elucidation of metabolic pathways using [5-2H]-ferulic acid.
    Krings U; Pilawa S; Theobald C; Berger RG
    J Biotechnol; 2001 Feb; 85(3):305-14. PubMed ID: 11173097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic.
    Kaur R; Sood A; Lang DK; Arora R; Kumar N; Diwan V; Saini B
    Curr Top Med Chem; 2022 Mar; 22(5):347-365. PubMed ID: 35040403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agrowaste to vanillin conversion by a natural Pediococcus acidilactici strain BD16.
    Chakraborty D; Kaur B; Obulisamy K; Selvam A; Wong JWC
    Environ Technol; 2017 Jul; 38(13-14):1823-1834. PubMed ID: 27734757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications.
    Mathew S; Abraham TE
    Crit Rev Biotechnol; 2004; 24(2-3):59-83. PubMed ID: 15493526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation.
    Costa MA; Bedgar DL; Moinuddin SG; Kim KW; Cardenas CL; Cochrane FC; Shockey JM; Helms GL; Amakura Y; Takahashi H; Milhollan JK; Davin LB; Browse J; Lewis NG
    Phytochemistry; 2005 Sep; 66(17):2072-91. PubMed ID: 16099486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).
    Wefers D; Gmeiner BM; Tyl CE; Bunzel M
    Phytochemistry; 2015 Aug; 116():320-328. PubMed ID: 25983037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense.
    de Ascensao AR; Dubery IA
    Phytochemistry; 2003 Jul; 63(6):679-86. PubMed ID: 12842140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferulic Acid From Plant Biomass: A Phytochemical With Promising Antiviral Properties.
    Antonopoulou I; Sapountzaki E; Rova U; Christakopoulos P
    Front Nutr; 2021; 8():777576. PubMed ID: 35198583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.
    Wakabayashi K; Soga K; Hoson T; Kotake T; Yamazaki T; Higashibata A; Ishioka N; Shimazu T; Fukui K; Osada I; Kasahara H; Kamada M
    PLoS One; 2015; 10(9):e0137992. PubMed ID: 26378793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diferulic acids in the cell wall may contribute to the suppression of shoot growth in the first phase of salt stress in maize.
    Uddin MN; Hanstein S; Faust F; Eitenmüller PT; Pitann B; Schubert S
    Phytochemistry; 2014 Jun; 102():126-36. PubMed ID: 24661612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation from guaiacyl to syringyl lignin in the differentiating xylem of Robinia pseudoacacia.
    Yamauchi K; Fukushima K
    C R Biol; 2004; 327(9-10):791-7. PubMed ID: 15587070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of phenolic compounds towards free radicals under in vitro conditions.
    Mathew S; Abraham TE; Zakaria ZA
    J Food Sci Technol; 2015 Sep; 52(9):5790-8. PubMed ID: 26344993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cinnamoyl esterase from Aspergillus niger can break plant cell wall cross-links without release of free diferulic acids.
    Garcia-Conesa MT; Kroon PA; Ralph J; Mellon FA; Colquhoun IJ; Saulnier L; Thibault JF; Williamson G
    Eur J Biochem; 1999 Dec; 266(2):644-52. PubMed ID: 10561608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.