These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28626931)

  • 21. Insect cytochrome P-450: metabolism and resistance to insecticides.
    Hodgson E; Rose RL; Goh DK; Rock GC; Roe RM
    Biochem Soc Trans; 1993 Nov; 21(4):1060-5. PubMed ID: 8131898
    [No Abstract]   [Full Text] [Related]  

  • 22. Way toward "dietary pesticides": molecular investigation of insecticidal action of caffeic acid against Helicoverpa armigera.
    Joshi RS; Wagh TP; Sharma N; Mulani FA; Sonavane U; Thulasiram HV; Joshi R; Gupta VS; Giri AP
    J Agric Food Chem; 2014 Nov; 62(45):10847-54. PubMed ID: 25329913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid substitutions and intron polymorphism of acetylcholinesterase1 associated with mevinphos resistance in diamondback moth, Plutella xylostella (L.).
    Yeh SC; Lin CL; Chang C; Feng HT; Dai SM
    Pestic Biochem Physiol; 2014 Jun; 112():7-12. PubMed ID: 24974111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IRAC: Mode of action classification and insecticide resistance management.
    Sparks TC; Nauen R
    Pestic Biochem Physiol; 2015 Jun; 121():122-8. PubMed ID: 26047120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides.
    Liu G; Wu Y; Gao Y; Ju X; Ozoe Y
    J Agric Food Chem; 2020 Apr; 68(17):4760-4768. PubMed ID: 32243147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The α6 nicotinic acetylcholine receptor subunit of Frankliniella occidentalis is not involved in resistance to spinosad.
    Hou W; Liu Q; Tian L; Wu Q; Zhang Y; Xie W; Wang S; Miguel KS; Funderburk J; Scott JG
    Pestic Biochem Physiol; 2014 May; 111():60-7. PubMed ID: 24861935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.
    Gnankiné O; Bassolé IH; Chandre F; Glitho I; Akogbeto M; Dabiré RK; Martin T
    Acta Trop; 2013 Oct; 128(1):7-17. PubMed ID: 23792227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.
    Ding Z; Wen Y; Yang B; Zhang Y; Liu S; Liu Z; Han Z
    Insect Biochem Mol Biol; 2013 Nov; 43(11):1021-7. PubMed ID: 23994173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.
    Liu N; Li M; Gong Y; Liu F; Li T
    Pestic Biochem Physiol; 2015 May; 120():77-81. PubMed ID: 25987224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Deltamethrin resistance, metabolic detoxification enzyme and kdr mutation in Anopheles sinensis in region along Huaihe River in Anhui Province].
    Chang XL; Xue YQ; Zhang AD; Zhu GD; Fang Q
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2013 Jun; 25(3):263-7. PubMed ID: 24024445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrethroid Insecticide Resistance Mechanisms in the Adult Phlebotomus papatasi (Diptera: Psychodidae).
    Fawaz EY; Zayed AB; Fahmy NT; Villinski JT; Hoel DF; Diclaro JW
    J Med Entomol; 2016 May; 53(3):620-628. PubMed ID: 26810731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén).
    Elzaki ME; Zhang W; Han Z
    Insect Mol Biol; 2015 Jun; 24(3):368-76. PubMed ID: 25693611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The colonization of pyrethroid resistant strain from wild Anopheles sinensis, the major Asian malaria vector.
    Zhu G; Zhou H; Li J; Tang J; Bai L; Wang W; Gu Y; Liu Y; Lu F; Cao Y; Zhang C; Xu S; Cao J; Gao Q
    Parasit Vectors; 2014 Dec; 7():582. PubMed ID: 25499700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Permethrin resistance variation and susceptible reference line isolation in a field population of the mosquito, Culex quinquefasciatus (Diptera: Culicidae).
    Yang T; Liu N
    Insect Sci; 2014 Oct; 21(5):659-66. PubMed ID: 24357606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insect response to plant defensive protease inhibitors.
    Zhu-Salzman K; Zeng R
    Annu Rev Entomol; 2015 Jan; 60():233-52. PubMed ID: 25341101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. United States Department of Agriculture-Agricultural Research Service research on managing insect resistance to insecticides.
    Elzen GW; Hardee DD
    Pest Manag Sci; 2003; 59(6-7):770-6. PubMed ID: 12846328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops.
    Wu G; Miyata T; Kang CY; Xie LH
    Pest Manag Sci; 2007 May; 63(5):500-10. PubMed ID: 17421051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests.
    Van Leeuwen T; Dermauw W; Mavridis K; Vontas J
    Curr Opin Insect Sci; 2020 Jun; 39():69-76. PubMed ID: 32361620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteases as insecticidal agents.
    Harrison RL; Bonning BC
    Toxins (Basel); 2010 May; 2(5):935-53. PubMed ID: 22069618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance.
    Hemingway J
    Insect Biochem Mol Biol; 2000 Nov; 30(11):1009-15. PubMed ID: 10989287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.