These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 28627135)

  • 41. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries.
    Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z
    Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-Nanostructured Electrochemical Detection for Intrinsic Mechanism of Energy Storage: Progress and Prospect.
    Farooqi SA; Wang X; Lu H; Li Q; Tang K; Chen Y; Yan C
    Small; 2018 Dec; 14(50):e1803482. PubMed ID: 30375720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes.
    Gu M; Parent LR; Mehdi BL; Unocic RR; McDowell MT; Sacci RL; Xu W; Connell JG; Xu P; Abellan P; Chen X; Zhang Y; Perea DE; Evans JE; Lauhon LJ; Zhang JG; Liu J; Browning ND; Cui Y; Arslan I; Wang CM
    Nano Lett; 2013; 13(12):6106-12. PubMed ID: 24224495
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances in Electrochemical Liquid-Phase Transmission Electron Microscopy for Visualizing Rechargeable Battery Reactions.
    Hu H; Yang R; Zeng Z
    ACS Nano; 2024 May; 18(20):12598-12609. PubMed ID: 38723158
    [TBL] [Abstract][Full Text] [Related]  

  • 45. What Can We Learn from Solid State NMR on the Electrode-Electrolyte Interface?
    Haber S; Leskes M
    Adv Mater; 2018 Oct; 30(41):e1706496. PubMed ID: 29889328
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries.
    Ghazi ZA; Sun Z; Sun C; Qi F; An B; Li F; Cheng HM
    Small; 2019 Aug; 15(32):e1900687. PubMed ID: 30972975
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rechargeable Aluminum-Ion Battery Based on MoS
    Li Z; Niu B; Liu J; Li J; Kang F
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9451-9459. PubMed ID: 29469560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithium-Ion Batteries by Using Ultrafine Multifiber Probes.
    Yamanaka T; Nakagawa H; Tsubouchi S; Domi Y; Doi T; Abe T; Ogumi Z
    ChemSusChem; 2017 Mar; 10(5):855-861. PubMed ID: 27925412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries.
    Chen X; Zhou Z; Karahan HE; Shao Q; Wei L; Chen Y
    Small; 2018 Nov; 14(44):e1801929. PubMed ID: 30160051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the Beneficial Effect of MgCl₂ as Electrolyte Additive to Improve the Electrochemical Performance of Li₄Ti₅O
    Cabello M; Ortiz GF; Lavela P; Tirado JL
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30917592
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction.
    Hirayama M; Ido H; Kim K; Cho W; Tamura K; Mizuki J; Kanno R
    J Am Chem Soc; 2010 Nov; 132(43):15268-76. PubMed ID: 20939527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries.
    Zachman MJ; Tu Z; Choudhury S; Archer LA; Kourkoutis LF
    Nature; 2018 Aug; 560(7718):345-349. PubMed ID: 30111789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries.
    Liu B; Xu W; Yan P; Bhattacharya P; Cao R; Bowden ME; Engelhard MH; Wang CM; Zhang JG
    ChemSusChem; 2015 Nov; 8(21):3697-703. PubMed ID: 26457378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mesoscale Battery Science: The Behavior of Electrode Particles Caught on a Multispectral X-ray Camera.
    Wei C; Xia S; Huang H; Mao Y; Pianetta P; Liu Y
    Acc Chem Res; 2018 Oct; 51(10):2484-2492. PubMed ID: 29889493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries.
    Lu Y; Cai Y; Zhang Q; Chen J
    Adv Mater; 2022 Jun; 34(22):e2104150. PubMed ID: 34617334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.