These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28627233)

  • 21. Analysis of chemical warfare agents by portable Raman spectrometer with both 785nm and 1064nm excitation.
    Kondo T; Hashimoto R; Ohrui Y; Sekioka R; Nogami T; Muta F; Seto Y
    Forensic Sci Int; 2018 Oct; 291():23-38. PubMed ID: 30125768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep-Ultraviolet Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).
    Lamsal N; Angel SM
    Appl Spectrosc; 2015 May; 69(5):525-34. PubMed ID: 25811967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.
    Barnett PD; Angel SM
    Appl Spectrosc; 2017 May; 71(5):988-995. PubMed ID: 27572631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Closer Look at Adsorption of Sarin and Simulants on Metal-Organic Frameworks.
    Emelianova A; Reed A; Basharova EA; Kolesnikov AL; Gor GY
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18559-18567. PubMed ID: 36976256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants.
    Cao Y; Elmahdy A; Zhu H; Hui X; Maibach H
    J Appl Toxicol; 2018 May; 38(5):724-733. PubMed ID: 29315700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UV-Cured Highly Crosslinked Polyurethane Acrylate to Serve as a Barrier against Chemical Warfare Agent Simulants.
    Chen X; Xiao L; Li H; Cui Y; Wang G
    Polymers (Basel); 2024 Jun; 16(11):. PubMed ID: 38891524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid,
    Brown HM; McDaniel TJ; Doppalapudi KR; Mulligan CC; Fedick PW
    Analyst; 2021 May; 146(10):3127-3136. PubMed ID: 33999086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants.
    Tyndall NF; Stievater TH; Kozak DA; Koo K; McGill RA; Pruessner MW; Rabinovich WS; Holmstrom SA
    Opt Lett; 2018 Oct; 43(19):4803-4806. PubMed ID: 30272744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraviolet Stand-off Raman Measurements Using a Gated Spatial Heterodyne Raman Spectrometer.
    Lamsal N; Sharma SK; Acosta TE; Angel SM
    Appl Spectrosc; 2016 Apr; 70(4):666-75. PubMed ID: 26883731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Effect of Thioureas on the Detection of Chemical Warfare Agent Simulants.
    Ha S; Lee M; Seo HO; Song SG; Kim KS; Park CH; Kim IH; Kim YD; Song C
    ACS Sens; 2017 Aug; 2(8):1146-1151. PubMed ID: 28776366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
    Steiner WE; Clowers BH; Haigh PE; Hill HH
    Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.
    Barnett PD; Lamsal N; Angel SM
    Appl Spectrosc; 2017 Apr; 71(4):583-590. PubMed ID: 28103051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of Dimethyl Methylphosphonate Adsorption and Decomposition on Zirconium Hydroxide Using Variable Temperature In Situ Attenuated Total Reflection Infrared Spectroscopy.
    Jeon S; Schweigert IV; Pehrsson PE; Balow RB
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14662-14671. PubMed ID: 32105054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Shot Standoff Hyperspectral Raman Imaging of a Chemical Warfare Agent Simulant.
    Anderson BR; Eilers H
    Appl Spectrosc; 2024 Jun; ():37028241258105. PubMed ID: 38835219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor.
    Liu K; Qin M; Shi Q; Wang G; Zhang J; Ding N; Xi H; Liu T; Kong J; Fang Y
    Anal Chem; 2022 Aug; 94(32):11151-11158. PubMed ID: 35921590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm.
    Witinski MF; Blanchard R; Pfluegl C; Diehl L; Li B; Krishnamurthy K; Pein BC; Azimi M; Chen P; Ulu G; Vander Rhodes G; Howle CR; Lee L; Clewes RJ; Williams B; Vakhshoori D
    Opt Express; 2018 Apr; 26(9):12159-12168. PubMed ID: 29716130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array.
    Allen A; Waldron A; Ottaway JM; Chance Carter J; Michael Angel S
    Appl Spectrosc; 2020 Aug; 74(8):921-931. PubMed ID: 32031013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants.
    Wu T; Qiu F; Xu R; Zhao Q; Guo L; Chen D; Li C; Jiao X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1265-1275. PubMed ID: 36594244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical warfare agent simulants for human volunteer trials of emergency decontamination: A systematic review.
    James T; Wyke S; Marczylo T; Collins S; Gaulton T; Foxall K; Amlôt R; Duarte-Davidson R
    J Appl Toxicol; 2018 Jan; 38(1):113-121. PubMed ID: 28990191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.