These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28627233)

  • 41. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.
    Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y
    Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of Dimethyl Methylphosphonate (DMMP) Using Polyhedral Oligomeric Silsesquioxane (POSS).
    Lee YJ; Kim JG; Kim JH; Yun J; Jang WJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6565-6569. PubMed ID: 29677835
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Four-Channel Monitoring System with Surface Acoustic Wave Sensors for Detection of Chemical Warfare Agents.
    Kim J; Kim E; Kim J; Kim JH; Ha S; Song C; Jang WJ; Yun J
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7151-7157. PubMed ID: 32604574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.
    Gephart RT; Coneski PN; Wynne JH
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10191-200. PubMed ID: 24060426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct measurement of chemical distributions in heterogeneous coatings.
    Cooley KA; Pearl TP; Varady MJ; Mantooth BA; Willis MP
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16289-96. PubMed ID: 25148420
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of chemical weapon agents and simulants using chemical ionization reaction time-of-flight mass spectrometry.
    Cordell RL; Willis KA; Wyche KP; Blake RS; Ellis AM; Monks PS
    Anal Chem; 2007 Nov; 79(21):8359-66. PubMed ID: 17894471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dimethyl methylphosphonate adsorption and decomposition on MoO
    Head AR; Tsyshevsky R; Trotochaud L; Yu Y; Karslıoǧlu O; Eichhorn B; Kuklja MM; Bluhm H
    J Phys Condens Matter; 2018 Apr; 30(13):134005. PubMed ID: 29469812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.
    Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC
    Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.
    Izake EL; Cletus B; Olds W; Sundarajoo S; Fredericks PM; Jaatinen E
    Talanta; 2012 May; 94():342-7. PubMed ID: 22608458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.
    Wolf JC; Etter R; Schaer M; Siegenthaler P; Zenobi R
    J Am Soc Mass Spectrom; 2016 Jul; 27(7):1197-202. PubMed ID: 27020924
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimizing Data Reduction Procedures in Spatial Heterodyne Raman Spectroscopy with Applications to Planetary Surface Analogs.
    Egan MJ; Angel SM; Sharma SK
    Appl Spectrosc; 2018 Jun; 72(6):933-942. PubMed ID: 29381083
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor for interaction with CWA simulants.
    Zhang Z; Fan J; Yu J; Zheng S; Chen W; Li H; Wang Z; Zhang W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):944-9. PubMed ID: 22257173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gas phase detection of chemical warfare agents CWAs with portable Raman.
    Lafuente M; Sanz D; Urbiztondo M; Santamaría J; Pina MP; Mallada R
    J Hazard Mater; 2020 Feb; 384():121279. PubMed ID: 31606709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adductomics: a promising tool for the verification of chemical warfare agents' exposures in biological samples.
    Golime R; Chandra B; Palit M; Dubey DK
    Arch Toxicol; 2019 Jun; 93(6):1473-1484. PubMed ID: 30923868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents.
    Li Y; Du X; Wang Y; Tai H; Qiu D; Lin Q; Jiang Y
    Nanoscale Res Lett; 2014; 9(1):224. PubMed ID: 24899869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural elucidation of direct analysis in real time ionized nerve agent simulants with infrared multiple photon dissociation spectroscopy.
    Rummel JL; Steill JD; Oomens J; Contreras CS; Pearson WL; Szczepanski J; Powell DH; Eyler JR
    Anal Chem; 2011 Jun; 83(11):4045-52. PubMed ID: 21491962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Standoff detection of biological agents using laser induced fluorescence-a comparison of 294 nm and 355 nm excitation wavelengths.
    Farsund O; Rustad G; Skogan G
    Biomed Opt Express; 2012 Nov; 3(11):2964-75. PubMed ID: 23162732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Follicular pathway role in chemical warfare simulants percutaneous penetration.
    Elmahdy A; Cao Y; Hui X; Maibach H
    J Appl Toxicol; 2021 Jun; 41(6):964-971. PubMed ID: 33030226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.