These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28627335)

  • 1. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice.
    Li CC; Dang F; Li M; Zhu M; Zhong H; Hintelmann H; Zhou DM
    Nanotoxicology; 2017 Jun; 11(5):699-709. PubMed ID: 28627335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways.
    Li WQ; Qing T; Li CC; Li F; Ge F; Fei JJ; Peijnenburg WJGM
    Chemosphere; 2020 Nov; 258():127349. PubMed ID: 32540544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement.
    Abbas Q; Liu G; Yousaf B; Ali MU; Ullah H; Ahmed R
    Environ Pollut; 2019 Jul; 250():728-736. PubMed ID: 31035155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles enter the tree stem faster through leaves than through roots.
    Cocozza C; Perone A; Giordano C; Salvatici MC; Pignattelli S; Raio A; Schaub M; Sever K; Innes JL; Tognetti R; Cherubini P
    Tree Physiol; 2019 Jul; 39(7):1251-1261. PubMed ID: 31180506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice.
    Wu Y; Yang L; Gong H; Dang F; Zhou DM
    Environ Pollut; 2020 May; 260():113969. PubMed ID: 31991350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana.
    Geisler-Lee J; Wang Q; Yao Y; Zhang W; Geisler M; Li K; Huang Y; Chen Y; Kolmakov A; Ma X
    Nanotoxicology; 2013 May; 7(3):323-37. PubMed ID: 22263604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation.
    Wu J; Wang G; Vijver MG; Bosker T; Peijnenburg WJGM
    Environ Pollut; 2020 Jun; 261():114117. PubMed ID: 32062092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytotoxic effects of silver nanoparticles in tobacco plants.
    Cvjetko P; Zovko M; Štefanić PP; Biba R; Tkalec M; Domijan AM; Vrček IV; Letofsky-Papst I; Šikić S; Balen B
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5590-5602. PubMed ID: 29222658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NOM mitigates the phytotoxicity of AgNPs by regulating rice physiology, root cell wall components and root morphology.
    Huang X; Li Y; Chen K; Chen H; Wang F; Han X; Zhou B; Chen H; Yuan R
    Environ Pollut; 2020 May; 260():113942. PubMed ID: 31995780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study.
    Yang J; Jiang F; Ma C; Rui Y; Rui M; Adeel M; Cao W; Xing B
    J Agric Food Chem; 2018 Mar; 66(11):2589-2597. PubMed ID: 29451784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration.
    Torrent L; Iglesias M; Marguí E; Hidalgo M; Verdaguer D; Llorens L; Kodre A; Kavčič A; Vogel-Mikuš K
    J Hazard Mater; 2020 Feb; 384():121201. PubMed ID: 31586917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure.
    Grasso A; Ferrante M; Arena G; Salemi R; Zuccarello P; Fiore M; Copat C
    Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33924319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonselective uptake of silver and gold nanoparticles by wheat.
    Zhang WY; Wang Q; Li M; Dang F; Zhou DM
    Nanotoxicology; 2019 Oct; 13(8):1073-1086. PubMed ID: 31271319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix.
    Dimkpa CO; McLean JE; Martineau N; Britt DW; Haverkamp R; Anderson AJ
    Environ Sci Technol; 2013 Jan; 47(2):1082-90. PubMed ID: 23259709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).
    Stegemeier JP; Schwab F; Colman BP; Webb SM; Newville M; Lanzirotti A; Winkler C; Wiesner MR; Lowry GV
    Environ Sci Technol; 2015 Jul; 49(14):8451-60. PubMed ID: 26106801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS.
    Vidmar J; Loeschner K; Correia M; Larsen EH; Manser P; Wichser A; Boodhia K; Al-Ahmady ZS; Ruiz J; Astruc D; Buerki-Thurnherr T
    Nanoscale; 2018 Jul; 10(25):11980-11991. PubMed ID: 29904776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique.
    Dang F; Chen YZ; Huang YN; Hintelmann H; Si YB; Zhou DM
    Environ Sci Technol; 2019 Apr; 53(7):3802-3810. PubMed ID: 30861341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the proteomic response of soybean towards Al₂O₃, ZnO, and Ag nanoparticles stress.
    Hossain Z; Mustafa G; Sakata K; Komatsu S
    J Hazard Mater; 2016 Mar; 304():291-305. PubMed ID: 26561753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag⁺ at sublethal concentrations.
    Wang J; Koo Y; Alexander A; Yang Y; Westerhof S; Zhang Q; Schnoor JL; Colvin VL; Braam J; Alvarez PJ
    Environ Sci Technol; 2013 May; 47(10):5442-9. PubMed ID: 23631766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses.
    Deng C; Wang Y; Cantu JM; Valdes C; Navarro G; Cota-Ruiz K; Hernandez-Viezcas JA; Li C; Elmer WH; Dimkpa CO; White JC; Gardea-Torresdey JL
    NanoImpact; 2022 Apr; 26():100406. PubMed ID: 35588596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.