BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28627373)

  • 1. Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment.
    Li M; Gehring R; Riviere JE; Lin Z
    Food Chem Toxicol; 2017 Sep; 107(Pt A):74-87. PubMed ID: 28627373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol, and Penicillin G.
    Chou WC; Tell LA; Baynes RE; Davis JL; Maunsell FP; Riviere JE; Lin Z
    Toxicol Sci; 2022 Jul; 188(2):180-197. PubMed ID: 35642931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic Physiologically Based Pharmacokinetic Model for Penicillin G in Milk From Dairy Cows Following Intramammary or Intramuscular Administrations.
    Li M; Gehring R; Riviere JE; Lin Z
    Toxicol Sci; 2018 Jul; 164(1):85-100. PubMed ID: 29945226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration.
    Li M; Cheng YH; Chittenden JT; Baynes RE; Tell LA; Davis JL; Vickroy TW; Riviere JE; Lin Z
    Arch Toxicol; 2019 Jul; 93(7):1865-1880. PubMed ID: 31025081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows.
    Li M; Mainquist-Whigham C; Karriker LA; Wulf LW; Zeng D; Gehring R; Riviere JE; Coetzee JF; Lin Z
    J Vet Pharmacol Ther; 2019 Jul; 42(4):461-475. PubMed ID: 31012501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Application of an Interactive Physiologically Based Pharmacokinetic (iPBPK) Model to Predict Oxytetracycline Tissue Distribution and Withdrawal Intervals in Market-Age Sheep and Goats.
    Riad MH; Baynes RE; Tell LA; Davis JL; Maunsell FP; Riviere JE; Lin Z
    Toxicol Sci; 2021 Sep; 183(2):253-268. PubMed ID: 34329480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspecies mixed-effect pharmacokinetic modeling of penicillin G in cattle and swine.
    Li M; Gehring R; Tell L; Baynes R; Huang Q; Riviere JE
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4495-503. PubMed ID: 24867969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of probabilistic modeling within a physiologically based pharmacokinetic model to predict sulfamethazine residue withdrawal times in edible tissues in swine.
    Buur J; Baynes R; Smith G; Riviere J
    Antimicrob Agents Chemother; 2006 Jul; 50(7):2344-51. PubMed ID: 16801411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of a population physiologically based pharmacokinetic model for florfenicol and its metabolite florfenicol amine in cattle.
    Yang F; Lin Z; Riviere JE; Baynes RE
    Food Chem Toxicol; 2019 Apr; 126():285-294. PubMed ID: 30825586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacokinetics of Mequindox and Its Marker Residue 1,4-Bisdesoxymequindox in Swine Following Multiple Oral Gavage and Intramuscular Administration: An Experimental Study Coupled with Population Physiologically Based Pharmacokinetic Modeling.
    Zeng D; Lin Z; Fang B; Li M; Gehring R; Riviere JE; Zeng Z
    J Agric Food Chem; 2017 Jul; 65(28):5768-5777. PubMed ID: 28640606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of residue depletion of cyadox and its marker residue in edible tissues of pigs using physiologically based pharmacokinetic modelling.
    Huang L; Lin Z; Zhou X; Zhu M; Gehring R; Riviere JE; Yuan Z
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(12):2002-17. PubMed ID: 26414219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox.
    Zhu X; Huang L; Xu Y; Xie S; Pan Y; Chen D; Liu Z; Yuan Z
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):192-210. PubMed ID: 28001497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue disposition and depletion of penicillin G after oral administration with milk in unweaned dairy calves.
    Musser JM; Anderson KL; Boison JO
    J Am Vet Med Assoc; 2001 Aug; 219(3):346-50. PubMed ID: 11497050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxytetracycline and penicillin-G residues in cattle slaughtered in south-western Nigeria: implications for livestock disease management and public health.
    Adesokan HK; Agada CA; Adetunji VO; Akanbi IM
    J S Afr Vet Assoc; 2013; 84(1):E1-5. PubMed ID: 23905209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella).
    Xu N; Li M; Chou WC; Lin Z
    Food Chem Toxicol; 2020 Mar; 137():111127. PubMed ID: 31945393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residue depletion in tissues and fluids from swine fed sulfamethazine, chlortetracycline and penicillin G in combination.
    Korsrud GO; Papich MG; Fesser AC; Salisbury CD; MacNeil JD
    Food Addit Contam; 1996 Apr; 13(3):287-92. PubMed ID: 8718743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of microbial growth inhibition screening assays with high-pressure liquid chromatography for detection of experimentally incurred penicillin G residues in calves.
    Musser JM; Anderson KL; Boison JO
    Vet Ther; 2002; 3(2):136-43. PubMed ID: 19750744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of penicillin G residues in tissues, plasma and injection sites of market pigs injected intramuscularly with procaine penicillin G.
    Korsrud GO; Salisbury CD; Rhodes CS; Papich MG; Yates WD; Bulmer WS; MacNeil JD; Landry DA; Lambert G; Yong MS; Ritters L
    Food Addit Contam; 1998; 15(4):421-6. PubMed ID: 9764212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiologically based pharmacokinetic model for the prediction of the depletion of methyl-3-quinoxaline-2-carboxylic acid, the marker residue of olaquindox, in the edible tissues of pigs.
    Yang B; Huang LL; Fang K; Wang YL; Peng DP; Liu ZL; Yuang ZH
    J Vet Pharmacol Ther; 2014 Feb; 37(1):66-82. PubMed ID: 23631588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a Monte Carlo analysis within a physiologically based pharmacokinetic model to predict doxycycline residue withdrawal time in edible tissues in swine.
    Yang F; Liu HW; Li M; Ding HZ; Huang XH; Zeng ZL
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(1):73-84. PubMed ID: 22059524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.