These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28627500)

  • 1. Nanowire-based thermoelectrics.
    Ali A; Chen Y; Vasiraju V; Vaddiraju S
    Nanotechnology; 2017 Jul; 28(28):282001. PubMed ID: 28627500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional disorder and its effect on the thermoelectric performance of Zn₃P₂ nanowire-copper nanoparticle composites.
    Brockway L; Vasiraju V; Vaddiraju S
    Nanotechnology; 2014 Mar; 25(12):125402. PubMed ID: 24577096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon nanowires as efficient thermoelectric materials.
    Boukai AI; Bunimovich Y; Tahir-Kheli J; Yu JK; Goddard WA; Heath JR
    Nature; 2008 Jan; 451(7175):168-71. PubMed ID: 18185583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric properties of large-scale Zn3P2 nanowire assemblies.
    Brockway L; Vasiraju V; Asayesh-Ardakani H; Shahbazian-Yassar R; Vaddiraju S
    Nanotechnology; 2014 Apr; 25(14):145401. PubMed ID: 24622159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: nanoscale effects and resonant-level scattering.
    Brockway L; Vasiraju V; Sunkara MK; Vaddiraju S
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14923-30. PubMed ID: 25110937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches.
    Yazdani S; Pettes MT
    Nanotechnology; 2018 Oct; 29(43):432001. PubMed ID: 30052199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupling electron and phonon transport in single-nanowire hybrid materials for high-performance thermoelectrics.
    Yang L; Gordon MP; Menon AK; Bruefach A; Haas K; Scott MC; Prasher RS; Urban JJ
    Sci Adv; 2021 May; 7(20):. PubMed ID: 33990321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Colloidal Quantum Dot Thermoelectrics.
    Nugraha MI; Indriyati I; Primadona I; Gedda M; Timuda GE; Iskandar F; Anthopoulos TD
    Adv Mater; 2023 Sep; 35(38):e2210683. PubMed ID: 36857683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Thermoelectric Design: From Materials and Structures to Devices.
    Shi XL; Zou J; Chen ZG
    Chem Rev; 2020 Aug; 120(15):7399-7515. PubMed ID: 32614171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric property enhancement via pore confinement in template grown bismuth telluride nanowire arrays.
    Reeves RD; Crosser LA; Chester GE; Hill JJ
    Nanotechnology; 2017 Dec; 28(50):505401. PubMed ID: 29087358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method.
    Lee SH; Shim W; Jang SY; Roh JW; Kim P; Park J; Lee W
    Nanotechnology; 2011 Jul; 22(29):295707. PubMed ID: 21677373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships.
    Kroon R; Mengistie DA; Kiefer D; Hynynen J; Ryan JD; Yu L; Müller C
    Chem Soc Rev; 2016 Nov; 45(22):6147-6164. PubMed ID: 27385496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Active Peltier Coolers Based on Interconnected Magnetic Nanowire Networks.
    da Câmara Santa Clara Gomes T; Marchal N; Abreu Araujo F; Piraux L
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phononic pathways towards rational design of nanowire heat conduction.
    Malhotra A; Maldovan M
    Nanotechnology; 2019 Sep; 30(37):372002. PubMed ID: 31151114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin-film thermoelectric devices with high room-temperature figures of merit.
    Venkatasubramanian R; Siivola E; Colpitts T; O'Quinn B
    Nature; 2001 Oct; 413(6856):597-602. PubMed ID: 11595940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Review on Thermoelectric Electrodeposits: Enhancing Thermoelectric Performance Through Nanoengineering.
    Wu T; Kim J; Lim JH; Kim MS; Myung NV
    Front Chem; 2021; 9():762896. PubMed ID: 34993175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoretic investigation of Bi₂Te₃ nanowires-a microfabricated thermoelectric characterization platform for measuring the thermoelectric and structural properties of single nanowires.
    Wang Z; Kojda D; Peranio N; Kroener M; Mitdank R; Toellner W; Nielsch K; Fischer SF; Gutsch S; Zacharias M; Eibl O; Woias P
    Nanotechnology; 2015 Mar; 26(12):125707. PubMed ID: 25743098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fabrication of dense and uniform InAs nanowire arrays.
    Persson AI; Fröberg LE; Samuelson L; Linke H
    Nanotechnology; 2009 Jun; 20(22):225304. PubMed ID: 19433868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectric nanowires for dense 3D printed architectures.
    Zhang D; Ramiah J; Cagirici M; Saglik K; Solco SFD; Cao J; Xu J; Suwardi A
    Mater Horiz; 2024 Feb; 11(3):847-854. PubMed ID: 38037761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility.
    Weldert KS; Zeier WG; Day TW; Panthöfer M; Snyder GJ; Tremel W
    J Am Chem Soc; 2014 Aug; 136(34):12035-40. PubMed ID: 25058352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.