These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28627500)

  • 21. Indium selenides: structural characteristics, synthesis and their thermoelectric performances.
    Han G; Chen ZG; Drennan J; Zou J
    Small; 2014 Jul; 10(14):2747-65. PubMed ID: 24729463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct electrical transport measurement on a single thermoelectric nanowire embedded in an alumina template.
    Ben Khedim M; Cagnon L; Garagnon C; Serradeil V; Bourgault D
    Phys Chem Chem Phys; 2016 Apr; 18(17):12332-7. PubMed ID: 27086560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.
    Savelli G; Stein SS; Bernard-Granger G; Faucherand P; Montès L; Dilhaire S; Pernot G
    Nanotechnology; 2015 Jul; 26(27):275605. PubMed ID: 26086207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermoelectric Power Factor Limit of a 1D Nanowire.
    Chen IJ; Burke A; Svilans A; Linke H; Thelander C
    Phys Rev Lett; 2018 Apr; 120(17):177703. PubMed ID: 29756845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel nano-configuration for thermoelectrics: helicity induced thermal conductivity reduction in nanowires.
    Varshney V; Roy AK; Dudis DS; Lee J; Farmer BL
    Nanoscale; 2012 Aug; 4(16):5009-16. PubMed ID: 22767206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-conformal decoration of semiconductor nanowire surfaces with boron nitride (BN) molecules for stability enhancement: degradation-resistant Zn3P2, ZnO and Mg2Si nanowires.
    Vasiraju V; Kang Y; Vaddiraju S
    Phys Chem Chem Phys; 2014 Aug; 16(30):16150-7. PubMed ID: 24968211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.
    Kovalenko MV; Spokoyny B; Lee JS; Scheele M; Weber A; Perera S; Landry D; Talapin DV
    J Am Chem Soc; 2010 May; 132(19):6686-95. PubMed ID: 20423085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal transport and thermoelectric properties of beta-graphyne nanostructures.
    Ouyang T; Hu M
    Nanotechnology; 2014 Jun; 25(24):245401. PubMed ID: 24859889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review on measurement techniques of transport properties of nanowires.
    Rojo MM; Calero OC; Lopeandia AF; Rodriguez-Viejo J; Martín-Gonzalez M
    Nanoscale; 2013 Dec; 5(23):11526-44. PubMed ID: 24113712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials.
    Zhu Q; Wang S; Wang X; Suwardi A; Chua MH; Soo XYD; Xu J
    Nanomicro Lett; 2021 May; 13(1):119. PubMed ID: 34138379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Power Conversion and Its Efficiency in Thermoelectric Materials.
    Feldhoff A
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires.
    Kim J; Lee S; Brovman YM; Kim P; Lee W
    Nanoscale; 2015 Mar; 7(11):5053-9. PubMed ID: 25697788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On-chip cooling by superlattice-based thin-film thermoelectrics.
    Chowdhury I; Prasher R; Lofgreen K; Chrysler G; Narasimhan S; Mahajan R; Koester D; Alley R; Venkatasubramanian R
    Nat Nanotechnol; 2009 Apr; 4(4):235-8. PubMed ID: 19350033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substantial local variation of the Seebeck coefficient in gold nanowires.
    Zolotavin P; Evans CI; Natelson D
    Nanoscale; 2017 Jul; 9(26):9160-9166. PubMed ID: 28650059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks.
    Ortega S; Ibáñez M; Liu Y; Zhang Y; Kovalenko MV; Cadavid D; Cabot A
    Chem Soc Rev; 2017 Jun; 46(12):3510-3528. PubMed ID: 28470243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semimetal/semiconductor nanocomposites for thermoelectrics.
    Lu H; Burke PG; Gossard AC; Zeng G; Ramu AT; Bahk JH; Bowers JE
    Adv Mater; 2011 May; 23(20):2377-83. PubMed ID: 21751469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power.
    Li L; Jiang JH
    Sci Rep; 2016 Aug; 6():31974. PubMed ID: 27550093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.