These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 28627753)
1. Traction Force Microscopy in 3-Dimensional Extracellular Matrix Networks. Cóndor M; Steinwachs J; Mark C; García-Aznar JM; Fabry B Curr Protoc Cell Biol; 2017 Jun; 75():10.22.1-10.22.20. PubMed ID: 28627753 [TBL] [Abstract][Full Text] [Related]
2. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Han YL; Ronceray P; Xu G; Malandrino A; Kamm RD; Lenz M; Broedersz CP; Guo M Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4075-4080. PubMed ID: 29618614 [TBL] [Abstract][Full Text] [Related]
3. The use of mixed collagen-Matrigel matrices of increasing complexity recapitulates the biphasic role of cell adhesion in cancer cell migration: ECM sensing, remodeling and forces at the leading edge of cancer invasion. Anguiano M; Morales X; Castilla C; Pena AR; Ederra C; Martínez M; Ariz M; Esparza M; Amaveda H; Mora M; Movilla N; Aznar JMG; Cortés-Domínguez I; Ortiz-de-Solorzano C PLoS One; 2020; 15(1):e0220019. PubMed ID: 31945053 [TBL] [Abstract][Full Text] [Related]
4. Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance. Cóndor M; Mark C; Gerum RC; Grummel NC; Bauer A; García-Aznar JM; Fabry B Biophys J; 2019 Apr; 116(7):1305-1312. PubMed ID: 30902366 [TBL] [Abstract][Full Text] [Related]
6. Fiber alignment in 3D collagen networks as a biophysical marker for cell contractility. Böhringer D; Bauer A; Moravec I; Bischof L; Kah D; Mark C; Grundy TJ; Görlach E; O'Neill GM; Budday S; Strissel PL; Strick R; Malandrino A; Gerum R; Mak M; Rausch M; Fabry B Matrix Biol; 2023 Dec; 124():39-48. PubMed ID: 37967726 [TBL] [Abstract][Full Text] [Related]
7. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Blázquez-Carmona P; Ruiz-Mateos R; Barrasa-Fano J; Shapeti A; Martín-Alfonso JE; Domínguez J; Van Oosterwyck H; Reina-Romo E; Sanz-Herrera JA Acta Biomater; 2024 Sep; 185():281-295. PubMed ID: 38992411 [TBL] [Abstract][Full Text] [Related]
8. An iterative finite element-based method for solving inverse problems in traction force microscopy. Cóndor M; García-Aznar JM Comput Methods Programs Biomed; 2019 Dec; 182():105056. PubMed ID: 31542705 [TBL] [Abstract][Full Text] [Related]
9. [Migratory properties of vascular smooth muscle cells on extracellular matrix: a study on inverted coverslip migration assay]. Wang F; Wang GQ; Xue F; Chen ZQ; Gong YS; Huang ZH Sheng Li Xue Bao; 2013 Apr; 65(2):135-42. PubMed ID: 23598868 [TBL] [Abstract][Full Text] [Related]
10. Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis. Anguiano M; Castilla C; Maška M; Ederra C; Peláez R; Morales X; Muñoz-Arrieta G; Mujika M; Kozubek M; Muñoz-Barrutia A; Rouzaut A; Arana S; Garcia-Aznar JM; Ortiz-de-Solorzano C PLoS One; 2017; 12(2):e0171417. PubMed ID: 28166248 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Reflectance Traction Microscopy. Kim J; Jones CA; Groves NS; Sun B PLoS One; 2016; 11(6):e0156797. PubMed ID: 27304456 [TBL] [Abstract][Full Text] [Related]
12. Determination of Green's function for three-dimensional traction force reconstruction based on geometry and boundary conditions of cell culture matrices. Du Y; Herath SCB; Wang QG; Asada H; Chen PCY Acta Biomater; 2018 Feb; 67():215-228. PubMed ID: 29242157 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of a matrigel-collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture. Lam NT; Lam H; Sturdivant NM; Balachandran K Biomed Mater; 2017 Jul; 12(4):045013. PubMed ID: 28484097 [TBL] [Abstract][Full Text] [Related]
14. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Patil LS; Varner VD Ann Biomed Eng; 2022 Sep; 50(9):1143-1157. PubMed ID: 35718813 [TBL] [Abstract][Full Text] [Related]
15. Toward single cell traction microscopy within 3D collagen matrices. Hall MS; Long R; Feng X; Huang Y; Hui CY; Wu M Exp Cell Res; 2013 Oct; 319(16):2396-408. PubMed ID: 23806281 [TBL] [Abstract][Full Text] [Related]
16. The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Bergmann S; Rohde M; Preissner KT; Hammerschmidt S Thromb Haemost; 2005 Aug; 94(2):304-11. PubMed ID: 16113819 [TBL] [Abstract][Full Text] [Related]
17. Spatial and temporal coordination of traction forces in one-dimensional cell migration. Han SJ; Rodriguez ML; Al-Rekabi Z; Sniadecki NJ Cell Adh Migr; 2016 Sep; 10(5):529-539. PubMed ID: 27588610 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional force microscopy of cells in biopolymer networks. Steinwachs J; Metzner C; Skodzek K; Lang N; Thievessen I; Mark C; Münster S; Aifantis KE; Fabry B Nat Methods; 2016 Feb; 13(2):171-6. PubMed ID: 26641311 [TBL] [Abstract][Full Text] [Related]
19. Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Lang NR; Skodzek K; Hurst S; Mainka A; Steinwachs J; Schneider J; Aifantis KE; Fabry B Acta Biomater; 2015 Feb; 13():61-7. PubMed ID: 25462839 [TBL] [Abstract][Full Text] [Related]
20. Novel inverse finite-element formulation for reconstruction of relative local stiffness in heterogeneous extra-cellular matrix and traction forces on active cells. Chen S; Xu W; Kim J; Nan H; Zheng Y; Sun B; Jiao Y Phys Biol; 2019 Mar; 16(3):036002. PubMed ID: 30721891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]