BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28627874)

  • 1. Impact of Postsynthetic Modification on the Electrical and Magnetic Properties of Materials.
    Asha KS; Ahmed N; Nath R; Kuznetsov D; Mandal S
    Inorg Chem; 2017 Jul; 56(13):7316-7319. PubMed ID: 28627874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SuFEx in Metal-Organic Frameworks: Versatile Postsynthetic Modification Tool.
    Park S; Song H; Ko N; Kim C; Kim K; Lee E
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33785-33789. PubMed ID: 30230813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes.
    Denny MS; Cohen SM
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):9029-32. PubMed ID: 26073065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach.
    Wang Z; Cohen SM
    J Am Chem Soc; 2009 Nov; 131(46):16675-7. PubMed ID: 19886623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switch-On Fluorescence of a Perylene-Dye-Functionalized Metal-Organic Framework through Postsynthetic Modification.
    Dietl C; Hintz H; Rühle B; Schmedt Auf der Günne J; Langhals H; Wuttke S
    Chemistry; 2015 Jul; 21(30):10714-20. PubMed ID: 26037475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynthetic modification of metal-organic frameworks--a progress report.
    Tanabe KK; Cohen SM
    Chem Soc Rev; 2011 Feb; 40(2):498-519. PubMed ID: 21103601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single crystal-to-single crystal site-selective postsynthetic metal exchange in a Zn-MOF based on semi-rigid tricarboxylic acid and access to bimetallic MOFs.
    Bajpai A; Chandrasekhar P; Govardhan S; Banerjee R; Moorthy JN
    Chemistry; 2015 Feb; 21(7):2759-65. PubMed ID: 25533890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postsynthetic modification of metal-organic frameworks.
    Wang Z; Cohen SM
    Chem Soc Rev; 2009 May; 38(5):1315-29. PubMed ID: 19384440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: a Versatile Platform for Postsynthetic Modification.
    Xi FG; Liu H; Yang NN; Gao EQ
    Inorg Chem; 2016 May; 55(10):4701-3. PubMed ID: 27136395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal-Organic Frameworks.
    Mon M; Ferrando-Soria J; Verdaguer M; Train C; Paillard C; Dkhil B; Versace C; Bruno R; Armentano D; Pardo E
    J Am Chem Soc; 2017 Jun; 139(24):8098-8101. PubMed ID: 28585837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Postsynthetic Renaissance in Porous Solids.
    Cohen SM
    J Am Chem Soc; 2017 Mar; 139(8):2855-2863. PubMed ID: 28118009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem postsynthetic modification of metal-organic frameworks using an inverse-electron-demand Diels-Alder reaction.
    Chen C; Allen CA; Cohen SM
    Inorg Chem; 2011 Nov; 50(21):10534-6. PubMed ID: 21985297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynthetic Addition of Ligand Struts in Metal-Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies.
    Xu X; Yang F; Han H; Xu Y; Wei W
    Inorg Chem; 2018 Mar; 57(5):2369-2372. PubMed ID: 29465235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.
    Stassen I; De Vos D; Ameloot R
    Chemistry; 2016 Oct; 22(41):14452-60. PubMed ID: 27483444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane.
    Zhang Y; Feng X; Li H; Chen Y; Zhao J; Wang S; Wang L; Wang B
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4259-63. PubMed ID: 25736697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-Shell Structures Arise Naturally During Ligand Exchange in Metal-Organic Frameworks.
    Boissonnault JA; Wong-Foy AG; Matzger AJ
    J Am Chem Soc; 2017 Oct; 139(42):14841-14844. PubMed ID: 29020774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect Engineering into Metal-Organic Frameworks for the Rapid and Sequential Installation of Functionalities.
    Park H; Kim S; Jung B; Park MH; Kim Y; Kim M
    Inorg Chem; 2018 Feb; 57(3):1040-1047. PubMed ID: 29303561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust MOFs of "tsg" Topology Based on Trigonal Prismatic Organic and Metal Cluster SBUs: Single Crystal to Single Crystal Postsynthetic Metal Exchange and Selective CO
    Chandrasekhar P; Savitha G; Moorthy JN
    Chemistry; 2017 May; 23(30):7297-7305. PubMed ID: 28370421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.