These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 28628038)

  • 21. Development of a ligand for in vivo imaging of mutant huntingtin in Huntington's disease.
    Bertoglio D; Bard J; Hessmann M; Liu L; Gärtner A; De Lombaerde S; Huscher B; Zajicek F; Miranda A; Peters F; Herrmann F; Schaertl S; Vasilkovska T; Brown CJ; Johnson PD; Prime ME; Mills MR; Van der Linden A; Mrzljak L; Khetarpal V; Wang Y; Marchionini DM; Skinbjerg M; Verhaeghe J; Dominguez C; Staelens S; Munoz-Sanjuan I
    Sci Transl Med; 2022 Feb; 14(630):eabm3682. PubMed ID: 35108063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene targeting techniques for Huntington's disease.
    Fields E; Vaughan E; Tripu D; Lim I; Shrout K; Conway J; Salib N; Lee Y; Dhamsania A; Jacobsen M; Woo A; Xue H; Cao K
    Ageing Res Rev; 2021 Sep; 70():101385. PubMed ID: 34098113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting N-Terminal Huntingtin with a Dual-sgRNA Strategy by CRISPR/Cas9.
    Wu J; Tang Y; Zhang CL
    Biomed Res Int; 2019; 2019():1039623. PubMed ID: 31828084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington's disease therapy.
    Carbo M; Brandi V; Pascarella G; Staid DS; Colotti G; Polticelli F; Ilari A; Morea V
    Int J Mol Med; 2019 Dec; 44(6):2223-2233. PubMed ID: 31638189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting Gpr52 lowers mutant HTT levels and rescues Huntington's disease-associated phenotypes.
    Song H; Li H; Guo S; Pan Y; Fu Y; Zhou Z; Li Z; Wen X; Sun X; He B; Gu H; Zhao Q; Wang C; An P; Luo S; Hu Y; Xie X; Lu B
    Brain; 2018 Jun; 141(6):1782-1798. PubMed ID: 29608652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease.
    Tabrizi SJ; Ghosh R; Leavitt BR
    Neuron; 2019 Mar; 101(5):801-819. PubMed ID: 30844400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The potential of gene editing for Huntington's disease.
    Duan W; Urani E; Mattson MP
    Trends Neurosci; 2023 May; 46(5):365-376. PubMed ID: 36907678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bim contributes to the progression of Huntington's disease-associated phenotypes.
    Roberts SL; Evans T; Yang Y; Fu Y; Button RW; Sipthorpe RJ; Cowan K; Valionyte E; Anichtchik O; Li H; Lu B; Luo S
    Hum Mol Genet; 2020 Jan; 29(2):216-227. PubMed ID: 31813995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of mutant and total huntingtin expression in Huntington's disease murine models.
    Fodale V; Pintauro R; Daldin M; Altobelli R; Spiezia MC; Bisbocci M; Macdonald D; Bresciani A
    Sci Rep; 2020 Dec; 10(1):22137. PubMed ID: 33335120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9 mediated genome editing of Huntington's disease neurospheres.
    Han JY; Seo J; Choi Y; Im W; Ban JJ; Sung JJ
    Mol Biol Rep; 2023 Mar; 50(3):2127-2136. PubMed ID: 36550260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes.
    Merienne N; Vachey G; de Longprez L; Meunier C; Zimmer V; Perriard G; Canales M; Mathias A; Herrgott L; Beltraminelli T; Maulet A; Dequesne T; Pythoud C; Rey M; Pellerin L; Brouillet E; Perrier AL; du Pasquier R; Déglon N
    Cell Rep; 2017 Sep; 20(12):2980-2991. PubMed ID: 28930690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice.
    Vodicka P; Chase K; Iuliano M; Valentine DT; Sapp E; Lu B; Kegel-Gleason KB; Sena-Esteves M; Aronin N; DiFiglia M
    J Huntingtons Dis; 2016 Jun; 5(2):163-74. PubMed ID: 27314618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyglutamine-mediated ribotoxicity disrupts proteostasis and stress responses in Huntington's disease.
    Aviner R; Lee TT; Masto VB; Li KH; Andino R; Frydman J
    Nat Cell Biol; 2024 Jun; 26(6):892-902. PubMed ID: 38741019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ellagic acid rescues motor and cognitive deficits in the R6/2 mouse model of Huntington's disease by lowering mutant huntingtin protein.
    Sun X; Zhu J; Sun XY; Ji M; Yu XL; Liu RT
    Food Funct; 2020 Feb; 11(2):1334-1348. PubMed ID: 32043503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac mTORC1 Dysregulation Impacts Stress Adaptation and Survival in Huntington's Disease.
    Child DD; Lee JH; Pascua CJ; Chen YH; Mas Monteys A; Davidson BL
    Cell Rep; 2018 Apr; 23(4):1020-1033. PubMed ID: 29694882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration.
    Lu B; Palacino J
    FASEB J; 2013 May; 27(5):1820-9. PubMed ID: 23325320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease.
    Zeitler B; Froelich S; Marlen K; Shivak DA; Yu Q; Li D; Pearl JR; Miller JC; Zhang L; Paschon DE; Hinkley SJ; Ankoudinova I; Lam S; Guschin D; Kopan L; Cherone JM; Nguyen HB; Qiao G; Ataei Y; Mendel MC; Amora R; Surosky R; Laganiere J; Vu BJ; Narayanan A; Sedaghat Y; Tillack K; Thiede C; Gärtner A; Kwak S; Bard J; Mrzljak L; Park L; Heikkinen T; Lehtimäki KK; Svedberg MM; Häggkvist J; Tari L; Tóth M; Varrone A; Halldin C; Kudwa AE; Ramboz S; Day M; Kondapalli J; Surmeier DJ; Urnov FD; Gregory PD; Rebar EJ; Muñoz-Sanjuán I; Zhang HS
    Nat Med; 2019 Jul; 25(7):1131-1142. PubMed ID: 31263285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of GSK-3 ameliorates the pathogenesis of Huntington's disease.
    Rippin I; Bonder K; Joseph S; Sarsor A; Vaks L; Eldar-Finkelman H
    Neurobiol Dis; 2021 Jul; 154():105336. PubMed ID: 33753290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
    Liu W; Chaurette J; Pfister EL; Kennington LA; Chase KO; Bullock J; Vonsattel JP; Faull RL; Macdonald D; DiFiglia M; Zamore PD; Aronin N
    J Huntingtons Dis; 2013; 2(4):491-500. PubMed ID: 25062733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial miRNAs targeting CAG repeat expansion in ORFs cause rapid deadenylation and translation inhibition of mutant transcripts.
    Ciesiolka A; Stroynowska-Czerwinska A; Joachimiak P; Ciolak A; Kozlowska E; Michalak M; Dabrowska M; Olejniczak M; Raczynska KD; Zielinska D; Wozna-Wysocka M; Krzyzosiak WJ; Fiszer A
    Cell Mol Life Sci; 2021 Feb; 78(4):1577-1596. PubMed ID: 32696070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.