These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298 [TBL] [Abstract][Full Text] [Related]
7. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte. Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043 [TBL] [Abstract][Full Text] [Related]
8. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System. Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries. Huang JQ; Guo X; Lin X; Zhu Y; Zhang B Research (Wash D C); 2019; 2019():2635310. PubMed ID: 31912030 [TBL] [Abstract][Full Text] [Related]
10. A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Fan X; Wang F; Ji X; Wang R; Gao T; Hou S; Chen J; Deng T; Li X; Chen L; Luo C; Wang L; Wang C Angew Chem Int Ed Engl; 2018 Jun; 57(24):7146-7150. PubMed ID: 29704298 [TBL] [Abstract][Full Text] [Related]
11. A High-Rate and Long-Life Aqueous Rechargeable Mg-Ion Battery Based on an Organic Anode Integrating Diimide and Triazine. Cang R; Zhang M; Zhou X; Zhu K; Zhang X; Cao D ChemSusChem; 2023 May; 16(10):e202202347. PubMed ID: 36648289 [TBL] [Abstract][Full Text] [Related]
12. Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery. Liu C; Wang X; Deng W; Li C; Chen J; Xue M; Li R; Pan F Angew Chem Int Ed Engl; 2018 Jun; 57(24):7046-7050. PubMed ID: 29537645 [TBL] [Abstract][Full Text] [Related]
13. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry. Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957 [TBL] [Abstract][Full Text] [Related]
14. A review of recent developments in rechargeable lithium-sulfur batteries. Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087 [TBL] [Abstract][Full Text] [Related]
15. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries. Bitenc J; Pirnat K; Bančič T; Gaberšček M; Genorio B; Randon-Vitanova A; Dominko R ChemSusChem; 2015 Dec; 8(24):4128-32. PubMed ID: 26610185 [TBL] [Abstract][Full Text] [Related]
16. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
17. A High-Energy Aqueous All-Sulfur Battery. Wang H; Bi S; Zhang Y; Tian J; Niu Z Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202317825. PubMed ID: 38238258 [TBL] [Abstract][Full Text] [Related]
18. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
19. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries. Chen X; Zhou Z; Karahan HE; Shao Q; Wei L; Chen Y Small; 2018 Nov; 14(44):e1801929. PubMed ID: 30160051 [TBL] [Abstract][Full Text] [Related]
20. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. Li W; Wang K; Zhou M; Zhan H; Cheng S; Jiang K ACS Appl Mater Interfaces; 2018 Jul; 10(26):22059-22066. PubMed ID: 29882643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]