These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 28628174)
1. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Arp HPH; Brown TN; Berger U; Hale SE Environ Sci Process Impacts; 2017 Jul; 19(7):939-955. PubMed ID: 28628174 [TBL] [Abstract][Full Text] [Related]
2. Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals. Schulze S; Sättler D; Neumann M; Arp HPH; Reemtsma T; Berger U Sci Total Environ; 2018 Jun; 625():1122-1128. PubMed ID: 29996409 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters. Zhou J; Saeidi N; Wick LY; Kopinke FD; Georgi A Sci Total Environ; 2021 Nov; 794():148508. PubMed ID: 34218142 [TBL] [Abstract][Full Text] [Related]
4. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Schulze S; Zahn D; Montes R; Rodil R; Quintana JB; Knepper TP; Reemtsma T; Berger U Water Res; 2019 Apr; 153():80-90. PubMed ID: 30703676 [TBL] [Abstract][Full Text] [Related]
5. Critical load analysis in hazard assessment of metals using a Unit World Model. Gandhi N; Bhavsar SP; Diamond ML Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970 [TBL] [Abstract][Full Text] [Related]
6. Determination of Persistent and Mobile Organic Contaminants (PMOCs) in Water by Mixed-Mode Liquid Chromatography-Tandem Mass Spectrometry. Montes R; Rodil R; Cela R; Quintana JB Anal Chem; 2019 Apr; 91(8):5176-5183. PubMed ID: 30896927 [TBL] [Abstract][Full Text] [Related]
7. Estimating the persistence of organic contaminants in indirect potable reuse systems using quantitative structure activity relationship (QSAR). Lim SJ; Fox P Sci Total Environ; 2012 Sep; 433():1-7. PubMed ID: 22766422 [TBL] [Abstract][Full Text] [Related]
8. Identification of potentially mobile and persistent transformation products of REACH-registered chemicals and their occurrence in surface waters. Zahn D; Mucha P; Zilles V; Touffet A; Gallard H; Knepper TP; Frömel T Water Res; 2019 Mar; 150():86-96. PubMed ID: 30508717 [TBL] [Abstract][Full Text] [Related]
9. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon. Kipka U; Di Toro DM Environ Toxicol Chem; 2011 Sep; 30(9):2023-9. PubMed ID: 21721034 [TBL] [Abstract][Full Text] [Related]
10. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Donnachie RL; Johnson AC; Moeckel C; Pereira MG; Sumpter JP Environ Pollut; 2014 Nov; 194():17-23. PubMed ID: 25084241 [TBL] [Abstract][Full Text] [Related]
11. Predicting dissolved organic carbon partition and distribution coefficients of neutral and ionizable organic chemicals. Vitale CM; Di Guardo A Sci Total Environ; 2019 Mar; 658():1056-1063. PubMed ID: 30677970 [TBL] [Abstract][Full Text] [Related]
12. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test. Klüver N; Bittermann K; Escher BI Aquat Toxicol; 2019 Feb; 207():110-119. PubMed ID: 30557756 [TBL] [Abstract][Full Text] [Related]
13. A guideline for the identification of environmentally relevant, ionizable organic molecule species. Schaffer M; Licha T Chemosphere; 2014 May; 103():12-25. PubMed ID: 24412098 [TBL] [Abstract][Full Text] [Related]
14. Mind the Gap: Persistent and Mobile Organic Compounds-Water Contaminants That Slip Through. Reemtsma T; Berger U; Arp HP; Gallard H; Knepper TP; Neumann M; Quintana JB; Voogt P Environ Sci Technol; 2016 Oct; 50(19):10308-10315. PubMed ID: 27571393 [TBL] [Abstract][Full Text] [Related]
15. Quantitative structure-activity relationships for primary aerobic biodegradation of organic chemicals in pristine surface waters: starting points for predicting biodegradation under acclimatization. Nolte TM; Pinto-Gil K; Hendriks AJ; Ragas AMJ; Pastor M Environ Sci Process Impacts; 2018 Jan; 20(1):157-170. PubMed ID: 29192704 [TBL] [Abstract][Full Text] [Related]
16. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Stackelberg PE; Furlong ET; Meyer MT; Zaugg SD; Henderson AK; Reissman DB Sci Total Environ; 2004 Aug; 329(1-3):99-113. PubMed ID: 15262161 [TBL] [Abstract][Full Text] [Related]
17. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater. Baun A; Eriksson E; Ledin A; Mikkelsen PS Sci Total Environ; 2006 Oct; 370(1):29-38. PubMed ID: 16814849 [TBL] [Abstract][Full Text] [Related]
18. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266 [TBL] [Abstract][Full Text] [Related]
19. Long-term leaching through clayey till of N,N-dimethylsulfamide, a Persistent and Mobile Organic Compound (PMOC). Frederiksen M; Albers CN; Mosthaf K; Janniche GAS; Tuxen N; Kerrn-Jespersen H; Bollmann UE; Christophersen M; Bjerg PL J Contam Hydrol; 2023 Jul; 257():104218. PubMed ID: 37356422 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish. Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]