These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28628267)

  • 1. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.
    Brasiliense V; Clausmeyer J; Dauphin AL; Noël JM; Berto P; Tessier G; Schuhmann W; Kanoufi F
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10598-10601. PubMed ID: 28628267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy.
    Brasiliense V; Clausmeyer J; Berto P; Tessier G; Combellas C; Schuhmann W; Kanoufi F
    Anal Chem; 2018 Jun; 90(12):7341-7348. PubMed ID: 29772168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shaping Copper Oxide Layers on Gold Nanoparticle Ensembles by Controlled Electrodeposition with Single Particle Scatterometry.
    Hwang H; Oh H; Song H
    Small; 2023 Aug; 19(32):e2301241. PubMed ID: 37086124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Opto- and Spectro-Electrochemistry: Reactions of Individual Nanoparticles Uncovered by Dark-Field Microscopy.
    Wonner K; Evers MV; Tschulik K
    J Am Chem Soc; 2018 Oct; 140(40):12658-12661. PubMed ID: 29995398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The promise of antireflective gold electrodes for optically monitoring the electro-deposition of single silver nanoparticles.
    Lemineur JF; Noël JM; Combellas C; Ausserré D; Kanoufi F
    Faraday Discuss; 2018 Oct; 210(0):381-395. PubMed ID: 29975385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical responses and electrocatalysis at single au nanoparticles.
    Li Y; Cox JT; Zhang B
    J Am Chem Soc; 2010 Mar; 132(9):3047-54. PubMed ID: 20148588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single Particle Nanoelectrochemistry Reveals the Catalytic Oxygen Evolution Reaction Activity of Co
    Quast T; Varhade S; Saddeler S; Chen YT; Andronescu C; Schulz S; Schuhmann W
    Angew Chem Int Ed Engl; 2021 Oct; 60(43):23444-23450. PubMed ID: 34411401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operando Studies of the Electrochemical Dissolution of Silver Nanoparticles in Nitrate Solutions Observed With Hyperspectral Dark-Field Microscopy.
    Wonner K; Rurainsky C; Tschulik K
    Front Chem; 2019; 7():912. PubMed ID: 32010665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.
    Huang K; Anne A; Bahri MA; Demaille C
    ACS Nano; 2013 May; 7(5):4151-63. PubMed ID: 23560497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwell array integrating nanoelectrodes for coupled opto-electrochemical monitorings of single mitochondria.
    Vajrala VS; Sekli Belaidi F; Lemercier G; Zigah D; Rigoulet M; Devin A; Sojic N; Temple-Boyer P; Launay J; Arbault S
    Biosens Bioelectron; 2019 Feb; 126():672-678. PubMed ID: 30530213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning electrochemical microscopy of individual catalytic nanoparticles.
    Sun T; Yu Y; Zacher BJ; Mirkin MV
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14120-3. PubMed ID: 25332196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically Imaging In Situ Effects of Electrochemical Cycling on Single Nanoparticle Electrocatalysis.
    Xie RC; Gao J; Wang SC; Li H; Wang W
    Anal Chem; 2024 Feb; 96(6):2455-2463. PubMed ID: 38285921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform arrays of gold nanoelectrodes with tuneable recess depth.
    Gordeeva EO; Roslyakov IV; Leontiev AP; Klimenko AA; Napolskii KS
    Beilstein J Nanotechnol; 2021; 12():957-964. PubMed ID: 34621609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au disk nanoelectrode by electrochemical deposition in a nanopore.
    Jena BK; Percival SJ; Zhang B
    Anal Chem; 2010 Aug; 82(15):6737-43. PubMed ID: 20608658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Electrodeposition and Optical Microscopy for Probing Size-Dependent Single-Nanoparticle Electrochemistry.
    Lemineur JF; Noël JM; Ausserré D; Combellas C; Kanoufi F
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11998-12002. PubMed ID: 30024085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical methods for studying local electrochemical reactions with spatial resolution: A critical review.
    Wang Y; Cao Z; Yang Q; Guo W; Su B
    Anal Chim Acta; 2019 Oct; 1074():1-15. PubMed ID: 31159929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local Substrate Heterogeneity Influences Electrochemical Activity of TEM Grid-Supported Battery Particles.
    Cashen C; Evans RC; Nilsson ZN; Sambur JB
    Front Chem; 2021; 9():651248. PubMed ID: 33816440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dark-field scattering spectroelectrochemical technique for tracking the electrodeposition of single silver nanoparticles.
    Hill CM; Pan S
    J Am Chem Soc; 2013 Nov; 135(46):17250-3. PubMed ID: 24175876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of High-Density and Superuniform Gold Nanoelectrode Arrays for Electrochemical Fluorescence Imaging.
    Qin X; Li ZQ; Zhou Y; Pan JB; Li J; Wang K; Xu JJ; Xia XH
    Anal Chem; 2020 Oct; 92(19):13493-13499. PubMed ID: 32878443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.